特征工程之分箱

一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。比如在建立申请评分卡模型时用logsitic作为基模型就需要对连续变量进行离散化,离散化通常采用分箱法。 分箱的重要性及其优势 离散特征的增加和减少都很容易,易于模型的快速迭代; 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展; 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是
相关文章
相关标签/搜索