【ICCV2019论文阅读】PU-GAN:点云上采样对抗网络

摘要 从范围扫描获取的点云通常稀疏,嘈杂且不均匀。 本文提出了一种称为PU-GAN 的新点云上采样网络,该网络是基于生成对抗网络(GAN)制定的,旨在从潜在空间中学习丰富的点分布并在对象表面的子块上对点进行上采样。为了实现可运行的GAN网络,我们在生成器中构造了一个自上而下再向上的扩展单元,以对带有误差反馈和自校正的点特征进行上采样,并制定了一个自注意力单元来增强特征集成。 此外,我们设计了具有对
相关文章
相关标签/搜索