如何防止过拟合

通常过拟合由以下三种原因产生:1. 假设过于复杂;2. 数据存在很多噪音;3. 数据规模太小。  过拟合的解决方法通常有:1. early stopping;2. 数据集扩增;3. 正则化;4. Dropout。 Early stopping: 对模型的训练过程就是对模型参数的进行学习更新的过程。参数学习的过程中往往会用到一些迭代算法,比如梯度下降法。Early stopping的目的就是在迭代次
相关文章
相关标签/搜索