sklearn——线性逻辑回归和非线性逻辑回归

线性逻辑回归 本文用代码实现怎么利用sklearn来进行线性逻辑回归的计算,下面先来看看用到的数据。 这是有两行特征的数据,然后第三行是数据的标签。 python代码 首先导入包和载入数据 写一个画图的函数,把这些数据表示出来: 然后我们调用这个函数得到下面的图像: 接下来开始创建模型并拟合,然后调用sklearn里面的逻辑回归方法,里面的函数可以自动帮算出权值和偏置值,非常简单,接着画出图像。
相关文章
相关标签/搜索