深入理解机器学习中的:目标函数,损失函数和代价函数

目标函数,损失函数和代价函数 基本概念: 损失函数:计算的是一个样本的误差 代价函数:是整个训练集上所有样本误差的平均 目标函数:代价函数 + 正则化项 通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数。损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的
相关文章
相关标签/搜索