SVD分解原理及基于SVD分解的图像压缩和去噪

  SVD分解是矩阵论中的一个知识点,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。SVD分解的公式如下,其中U和V都为正交矩阵,中间的为特征值构成的对角矩阵,相对于正交对角分解,SVD分解的适应性更强,应为A不必是方阵,下面是SVD分解的公式。 用SVD做
相关文章
相关标签/搜索