https://arxiv.org/pdf/1706.08249.pdfweb
Few-Example Object Detection with Model Communication,Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, Deyu Mengapp
亮点dom
相关工做函数
这里介绍几个比较容易混淆的概念,以及与他们相关的方法性能
方法学习
Basic detector: Faster RCNN & RFCN优化
Object proposal method: selective search & edge boxesthis
Annotations: when we randomly annotate approximately four images for each class, an image may contain several objects, and we annotate all the object bounding boxes.spa
参数更新:
更新vj:对上述损失函数进行求导,能够获得vj的解3d
对同一张图像i同一个模型j,若是有多个样本使得vj=1,则只选择使Lc最小的那个样本置为1,其余置为0。gamma促使模型之间共享信息,由于vj为1时,阈值变大,图像更容易被选择到。
更新wj:与其它文章方法相同
更新yuj:为更新yuj咱们须要从一组bounding box找到知足如下条件的解,
很难直接找到最优化的解。文中采用的方案是:将全部模型预测出的结果输入nms,并经过阈值只保留分数高的结果,余下的组成yuj。
去除难例:we employ a modified NMS (intersection/max(area1,area2)) to filter out the nested boxes, which usually occurs when there are multiple overlapping objects. If there are too many boxes (≥ 4) for one specific class or too many classes (≥ 4) in the image, this image will be removed. Images in which no reliable pseudo objects are found are filtered out.
实验
Compared with the-state-of-the-art (4.2 images per class is annotated)
[20] V. Kantorov, M. Oquab, M. Cho, and I. Laptev, “Contextlocnet: Context-aware deep network models for weakly supervised localization,” in European Conference on Computer Vision, 2016.
[21] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van Gool, “Weakly supervised cascaded convolutional networks,” 2017
[22] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, “Soft proposal networks for weakly supervised object localization,” in International Conference on Computer Vision, 2017.
Ablation study
不足
虽然localization有必定准确率,可是难例图片漏检比较多(也就是说few example classification效果很差)。