高光谱遥感可以实现冠层生化特性的大规模绘图。本研究探讨了从印度尼西亚Berau三角洲的红树林中回收氮,磷,钾,钙,镁和钠浓度的可能性。
该研究的目的是(1)评估叶面化学检索的准确性,(2)比较基于支持向量回归(SVR)的模型的性能,即ε-SVR,ν-SVR和最小二乘SVR(LS) -SVR),基于偏最小二乘回归(PLSR)的模型,以及(3)研究哪一种光谱变换最适合。java
红树林生长在热带和亚热带的潮间带沿海栖息地。它们是地球上受威胁最严重的脆弱生态系统之一,并受到人类活动的持续压力 。 工具
研究区位于印度尼西亚东加里曼丹省的Berau三角洲 。性能
研究区域的位置(数据来源:Bakosurtanal,印度尼西亚,2000年)。优化
样本沿垂直于海岸线的横断面收集。目的是捕捉研究区红树林类型和生长条件的变化,反映叶片生化指标的变化。距海岸线最大长度400米被认为足以捕获叶面生化变异。总共有77个叶样品沿着横断面收集,距离大约为50米的分离点 。 spa
研究区域中的样本位置。code
在每一个样本点,选择主导属的表明树,而且其位置用GPS登记。从树冠上部切下一对树枝,从这些树枝上收集10片成熟的未受损叶子并储存在信封中。红树叶的生化成分随叶龄而变化,特别是在衰老过程当中。component
众所周知的是适当的光谱转化技术能够去除噪声和提升生物化学吸取特征,从而提升了回归模型的精确度 。除了使用未转换的反射率以外,还应用了四种光谱转换方法并在分析中进行了比较。blog
偏最小二乘回归rem
PLSR使用份量投影将整个频谱减小到包含最有用信息的较少数量的非相关份量(也称为_潜在变量_)。在很大程度上,在凝聚的组分中消除了原始光谱中的噪声和共线性。MATLAB v.R2010a(MathWorks)中的PLSREGRESS工具用于回归建模,并经过五重交叉验证优化组件数量。get
[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10); plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo'); xlabel('Number of PLS components'); ylabel('Percent Variance Explained in y'); yfit = [ones(size(X,1),1) X]*beta; residuals = y - yfit; stem(residuals) xlabel('Observation'); ylabel('Residual');
基于CRDR(最高性能的光谱变换技术)的模型用于分析光谱带的相对重要性。 LS-SVR和PLSR系数显示类似的模式,代表SVR p-矢量包含相似于PLSR系数的信息,而且能够以相同的方式解释。
使用CRDR转换反射率估算N的光谱带的相对重要性。系数经过除以它们各自的标准误差归一化。
使用LS-SVR和CRDR进行氮预测。
使用全部CRDR条带从PLSR获得的氮浓度图
叶面积的变化可能影响预测的N浓度。然而,尽管树木密度较低,沿着海岸线的_阿维森尼亚_林分仍显示出始终如一的高水平。具备高度泥浆或根(即低LAI)的像素被分类为非红树林(地图上的浅灰色),所以减小了稀疏冠层覆盖的负面影响。
基于该研究,得出如下结论。
1。
评估了四种不一样回归技术ε-SVR,ν-SVR,LS-SVR和PLSR的性能。 PLSR是使用全部波段时具备最高精度的方法,而且在抑制氮气图中的噪声方面更有效。
2。
基于SVM的方法易受自变量中的冗余和共线性的影响,而且必须减小频带的数量以得到最佳性能。在这里,经过分析生成的PLSR和SVR模型的结构来识别最具信息性的条带。
3。
比较了不一样的光谱变换方法对预测模型性能的影响。CRDR被证实是加强与氮有关的吸取特征的最有效的转化方法。
整体而言,该研究已经证实了使用空气传播的高光谱数据和经验模型预测红树林中氮的可能性。用于预测磷,钾,钙,镁和钠的模型显示出不太使人鼓舞的结果。生成了研究区域的叶片氮变异图,而且出现的模式可用于分析生态系统过程,例如与红树林中的洪水进行营养交换。分析这些大规模的叶面氮空间模式对于红树林营养动态研究人员和森林管理的角度来讲都是很是有益的。