贝叶斯深度学习-概述

一、背景 1.1 深度神经网络 深度神经网络是连接主义系统,通过它通过学习例子来完成任务,而不需要事先了解这些任务。它们可以很容易地扩展到数百万个数据点,并且可以通过随机梯度下降进行优化。 CNN是DNN的变体,能够适应各种非线性数据点。 起始层学习更简单的特征,如边和角, 后续层学习复杂的特征,如颜色,纹理等。此外,较高的神经元具有较大的感受野,构建在起始层上。然而,与多层感知器不同, 权重共享
相关文章
相关标签/搜索