Meta-Transfer Learning for Few-Shot Learning 论文笔记

前言 元学习(meta-learning)是目前广泛使用的处理小样本学习问题的方法,它的目的是在学习不同任务的过程中积累经验,从而使得模型能够快速适应新任务。比如在MAML(Model-Agnostic Meta- Learning)中,通过搜寻最优初始化状态,使得base-learner能够快速适应新任务。但是这一类元学习方法具有两个缺点: 需要大量相似的任务以进行元训练(meta-traini
相关文章
相关标签/搜索