卷积神经网络调参技巧(2)--过拟合(Dropout)

Dropout(丢弃) 首先需要讲一下过拟合,训练一个大型网络时,因为训练数据有限,很容易出现过拟合。过拟合是指模型的泛化能力差,网络对训练数据集的拟合能力很好,但是换了其他的数据集,拟合能力就变差了。 在训练深层网络模型时,按照一定的概率,暂时将神经元丢弃,得到一个更加简单的网络模型,即每一个batch训练的网络模型都是不一样的,都是原始网络的子集,这些子网络共享权值,与原始网络的层数、参数数目
相关文章
相关标签/搜索