考研数学之高等数学知识点整理——8.不定积分

本系列博客汇总在这里:考研数学知识点汇总系列博客html

8、不定积分

1 不定积分的基本性质

[ f ( x ) d x ] = f ( x ) [\int f(x)\mathrm{d}x]'=f(x) d f ( x ) d x = f ( x ) d x \mathrm{d}\int f(x)\mathrm{d}x=f(x)\mathrm{d}x

f ( x ) d x = d f ( x ) = f ( x ) + C \int f'(x)\mathrm{d}x=\int \mathrm{d}f(x)=f(x)+C

k f ( x ) d x = k f ( x ) d x ( k 0 ) \int kf(x)\mathrm{d}x=k\int f(x)\mathrm{d}x,(k≠0为常数)

[ f ( x ) ± g ( x ) ] d x = f ( x ) d x ± g ( x ) d x \int [f(x)±g(x)]\mathrm{d}x=\int f(x)\mathrm{d}x±\int g(x)\mathrm{d}x
web

2 基本积分公式

x n d x = 1 1 + a x 1 + a + C \int x^n\mathrm{d}x=\frac{1}{1+a}x^{1+a}+C

1 x d x = ln x + C \int \frac{1}{x}\mathrm{d}x=\ln{|x|}+C

a x d x = a x ln a + C \int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C e x d x = e x + C \int e^x\mathrm{d}x=e^x+C

cos x d x = sin x + C \int \cos{x}\mathrm{d}x=\sin{x}+C

sin x d x = cos x + C \int \sin{x}\mathrm{d}x=-\cos{x}+C

sec 2 x d x = 1 cos 2 x d x = tan x + C \int \sec^2{x}\mathrm{d}x=\int \frac{1}{\cos^2{x}}\mathrm{d}x=\tan{x}+C

csc 2 x d x = 1 sin 2 x d x = cot x + C \int \csc^2{x}\mathrm{d}x=\int \frac{1}{\sin^2{x}}\mathrm{d}x=-\cot{x}+C

sec x tan x d x = sec x + C \int \sec x\tan x\mathrm{d}x=\sec x+C

csc x cot x d x = csc x + C \int \csc x\cot x\mathrm{d}x=-\csc x+C

sec x d x = ln sec x + tan x + C \int \sec x\mathrm{d}x=\ln{|\sec x+\tan x|}+C

csc x d x = ln csc x cot x + C \int \csc x\mathrm{d}x=\ln{|\csc x-\cot x|}+C

1 a 2 + x 2 d x = 1 a arctan x a + C \int \frac{1}{a^2+x^2}\mathrm{d}x=\frac{1}{a}\arctan\frac{x}{a}+C

1 1 + x 2 d x = arctan x + C \int \frac{1}{1+x^2}\mathrm{d}x=\arctan x+C

1 a 2 x 2 d x = arcsin x a + C \int \frac{1}{\sqrt{a^2-x^2}}\mathrm{d}x=\arcsin\frac{x}{a}+C

1 1 x 2 d x = arcsin x + C \int \frac{1}{\sqrt{1-x^2}}\mathrm{d}x=\arcsin x+C

1 a 2 x 2 d x = 1 2 a ln a + x a x + C \int \frac{1}{a^2-x^2}\mathrm{d}x=\frac{1}{2a}\ln{|\frac{a+x}{a-x}|}+C

1 x 2 ± a 2 = ln x + x 2 ± a 2 + C \int \frac{1}{\sqrt{x^2±a^2}}=\ln{|x+\sqrt{x^2±a^2}|}+C
app

3 不定积分法

3.1 第一类换元积分法

设f(u)有原函数F(u),u=φ(x)可导,则有
f [ φ ( x ) ] φ ( x ) d x = f [ φ ( x ) ] d φ ( x ) = f ( u ) d u = F ( u ) + C = F ( φ ( x ) ) + C \int f[φ(x)]φ'(x)\mathrm{d}x=\int f[φ(x)]\mathrm{d}φ(x)=\int f(u)\mathrm{d}u=F(u)+C=F(φ(x))+C
ide

3.2 第二类换元积分法

设函数x=φ(x)具备连续导数,且φ’(x)≠0,又设f[φ(t)]φ’(t)具备原函数Φ(t),则
f ( x ) d x = f [ φ ( t ) ] φ ( t ) d t = Φ ( t ) + C = Φ [ φ 1 ( x ) ] + C \int f(x)\mathrm{d}x=\int f[φ(t)]φ'(t)\mathrm{d}t=Φ(t)+C=Φ[φ^{-1}(x)]+C
svg

3.3 分部积分法

设函数u=u(x),v=v(x)具备连续导数,则
u d v = u v v d u \int u\mathrm{d}v=uv-\int v\mathrm{d}u
函数