一文弄懂神经网络中的反向传播法——BackPropagation

  最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方老是不是很明确,又去看英文版,而后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,可是补充的又是错的,难怪以为有问题。反向传播法实际上是神经网络的基础了,可是不少人在学的时候老是会遇到一些问题,或者看到大篇的公式以为好像很难就退缩了,其实不难,就是一个链式求导法则反复用。若是不想看公式,能够直接把数值带进去,实际的计算一下,体会一下这个过程以后再来推导公式,这样就会以为很容易了。html

  说到神经网络,你们看到这个图应该不陌生:网络

 

  这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,咱们如今手里有一堆数据{x1,x2,x3,...,xn},输出也是一堆数据{y1,y2,y3,...,yn},如今要他们在隐含层作某种变换,让你把数据灌进去后获得你指望的输出。若是你但愿你的输出和原始输入同样,那么就是最多见的自编码模型(Auto-Encoder)。可能有人会问,为何要输入输出都同样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来讲明,包括一些变种之类的。若是你的输出和原始输入不同,那么就是很常见的人工神经网络了,至关于让原始数据经过一个映射来获得咱们想要的输出数据,也就是咱们今天要讲的话题。app

  本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同窗能够本身推导下试试:)(注:本文假设你已经懂得基本的神经网络构成,若是彻底不懂,能够参考Poll写的笔记:[Mechine Learning & Algorithm] 神经网络基础dom

  假设,你有这样一个网络层:编辑器

  第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间链接的权重,激活函数咱们默认为sigmoid函数。函数

  如今对他们赋上初值,以下图:post

  其中,输入数据  i1=0.05,i2=0.10;学习

     输出数据 o1=0.01,o2=0.99;编码

     初始权重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;url

           w5=0.40,w6=0.45,w7=0.50,w8=0.55

 

  目标:给出输入数据i1,i2(0.05和0.10),使输出尽量与原始输出o1,o2(0.01和0.99)接近。

 

  Step 1 前向传播

  1.输入层---->隐含层:

  计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

 

 

  同理,可计算出神经元h2的输出o2:

  

 

  2.隐含层---->输出层:

  计算输出层神经元o1和o2的值:

  

 

这样前向传播的过程就结束了,咱们获得输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,如今咱们对偏差进行反向传播,更新权值,从新计算输出。

 

Step 2 反向传播

1.计算总偏差

总偏差:(square error)

可是有两个输出,因此分别计算o1和o2的偏差,总偏差为二者之和:

 

2.隐含层---->输出层的权值更新:

以权重参数w5为例,若是咱们想知道w5对总体偏差产生了多少影响,能够用总体偏差对w5求偏导求出:(链式法则)

下面的图能够更直观的看清楚偏差是怎样反向传播的:

如今咱们来分别计算每一个式子的值:

计算

计算

(这一步实际上就是对sigmoid函数求导,比较简单,能够本身推导一下)

 

计算

最后三者相乘:

这样咱们就计算出总体偏差E(total)对w5的偏导值。

回过头来再看看上面的公式,咱们发现:

为了表达方便,用来表示输出层的偏差:

所以,总体偏差E(total)对w5的偏导公式能够写成:

若是输出层偏差计为负的话,也能够写成:

最后咱们来更新w5的值:

(其中,是学习速率,这里咱们取0.5)

同理,可更新w6,w7,w8:

 

3.隐含层---->隐含层的权值更新:

 方法其实与上面说的差很少,可是有个地方须要变一下,在上文计算总偏差对w5的偏导时,是从out(o1)---->net(o1)---->w5,可是在隐含层之间的权值更新时,是out(h1)---->net(h1)---->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的偏差,因此这个地方两个都要计算。

 

 

计算

先计算

同理,计算出:

          

二者相加获得总值:

再计算

再计算

最后,三者相乘:

 为了简化公式,用sigma(h1)表示隐含层单元h1的偏差:

最后,更新w1的权值:

同理,额可更新w2,w3,w4的权值:

 

  这样偏差反向传播法就完成了,最后咱们再把更新的权值从新计算,不停地迭代,在这个例子中第一次迭代以后,总偏差E(total)由0.298371109降低至0.291027924。迭代10000次后,总偏差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证实效果仍是不错的。

 

代码(Python):

  1 #coding:utf-8
  2 import random
  3 import math
  4 
  5 #
  6 #   参数解释:
  7 #   "pd_" :偏导的前缀
  8 #   "d_" :导数的前缀
  9 #   "w_ho" :隐含层到输出层的权重系数索引
 10 #   "w_ih" :输入层到隐含层的权重系数的索引
 11 
 12 class NeuralNetwork:
 13     LEARNING_RATE = 0.5
 14 
 15     def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
 16         self.num_inputs = num_inputs
 17 
 18         self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
 19         self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
 20 
 21         self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
 22         self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
 23 
 24     def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
 25         weight_num = 0
 26         for h in range(len(self.hidden_layer.neurons)):
 27             for i in range(self.num_inputs):
 28                 if not hidden_layer_weights:
 29                     self.hidden_layer.neurons[h].weights.append(random.random())
 30                 else:
 31                     self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
 32                 weight_num += 1
 33 
 34     def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
 35         weight_num = 0
 36         for o in range(len(self.output_layer.neurons)):
 37             for h in range(len(self.hidden_layer.neurons)):
 38                 if not output_layer_weights:
 39                     self.output_layer.neurons[o].weights.append(random.random())
 40                 else:
 41                     self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
 42                 weight_num += 1
 43 
 44     def inspect(self):
 45         print('------')
 46         print('* Inputs: {}'.format(self.num_inputs))
 47         print('------')
 48         print('Hidden Layer')
 49         self.hidden_layer.inspect()
 50         print('------')
 51         print('* Output Layer')
 52         self.output_layer.inspect()
 53         print('------')
 54 
 55     def feed_forward(self, inputs):
 56         hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
 57         return self.output_layer.feed_forward(hidden_layer_outputs)
 58 
 59     def train(self, training_inputs, training_outputs):
 60         self.feed_forward(training_inputs)
 61 
 62         # 1. 输出神经元的值
 63         pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
 64         for o in range(len(self.output_layer.neurons)):
 65 
 66             # ∂E/∂zⱼ
 67             pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
 68 
 69         # 2. 隐含层神经元的值
 70         pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
 71         for h in range(len(self.hidden_layer.neurons)):
 72 
 73             # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
 74             d_error_wrt_hidden_neuron_output = 0
 75             for o in range(len(self.output_layer.neurons)):
 76                 d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
 77 
 78             # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
 79             pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
 80 
 81         # 3. 更新输出层权重系数
 82         for o in range(len(self.output_layer.neurons)):
 83             for w_ho in range(len(self.output_layer.neurons[o].weights)):
 84 
 85                 # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
 86                 pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
 87 
 88                 # Δw = α * ∂Eⱼ/∂wᵢ
 89                 self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
 90 
 91         # 4. 更新隐含层的权重系数
 92         for h in range(len(self.hidden_layer.neurons)):
 93             for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
 94 
 95                 # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
 96                 pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
 97 
 98                 # Δw = α * ∂Eⱼ/∂wᵢ
 99                 self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
100 
101     def calculate_total_error(self, training_sets):
102         total_error = 0
103         for t in range(len(training_sets)):
104             training_inputs, training_outputs = training_sets[t]
105             self.feed_forward(training_inputs)
106             for o in range(len(training_outputs)):
107                 total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
108         return total_error
109 
110 class NeuronLayer:
111     def __init__(self, num_neurons, bias):
112 
113         # 同一层的神经元共享一个截距项b
114         self.bias = bias if bias else random.random()
115 
116         self.neurons = []
117         for i in range(num_neurons):
118             self.neurons.append(Neuron(self.bias))
119 
120     def inspect(self):
121         print('Neurons:', len(self.neurons))
122         for n in range(len(self.neurons)):
123             print(' Neuron', n)
124             for w in range(len(self.neurons[n].weights)):
125                 print('  Weight:', self.neurons[n].weights[w])
126             print('  Bias:', self.bias)
127 
128     def feed_forward(self, inputs):
129         outputs = []
130         for neuron in self.neurons:
131             outputs.append(neuron.calculate_output(inputs))
132         return outputs
133 
134     def get_outputs(self):
135         outputs = []
136         for neuron in self.neurons:
137             outputs.append(neuron.output)
138         return outputs
139 
140 class Neuron:
141     def __init__(self, bias):
142         self.bias = bias
143         self.weights = []
144 
145     def calculate_output(self, inputs):
146         self.inputs = inputs
147         self.output = self.squash(self.calculate_total_net_input())
148         return self.output
149 
150     def calculate_total_net_input(self):
151         total = 0
152         for i in range(len(self.inputs)):
153             total += self.inputs[i] * self.weights[i]
154         return total + self.bias
155 
156     # 激活函数sigmoid
157     def squash(self, total_net_input):
158         return 1 / (1 + math.exp(-total_net_input))
159 
160 
161     def calculate_pd_error_wrt_total_net_input(self, target_output):
162         return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
163 
164     # 每个神经元的偏差是由平方差公式计算的
165     def calculate_error(self, target_output):
166         return 0.5 * (target_output - self.output) ** 2
167 
168     
169     def calculate_pd_error_wrt_output(self, target_output):
170         return -(target_output - self.output)
171 
172     
173     def calculate_pd_total_net_input_wrt_input(self):
174         return self.output * (1 - self.output)
175 
176 
177     def calculate_pd_total_net_input_wrt_weight(self, index):
178         return self.inputs[index]
179 
180 
181 # 文中的例子:
182 
183 nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
184 for i in range(10000):
185     nn.train([0.05, 0.1], [0.01, 0.09])
186     print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
187 
188 
189 #另一个例子,能够把上面的例子注释掉再运行一下:
190 
191 # training_sets = [
192 #     [[0, 0], [0]],
193 #     [[0, 1], [1]],
194 #     [[1, 0], [1]],
195 #     [[1, 1], [0]]
196 # ]
197 
198 # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
199 # for i in range(10000):
200 #     training_inputs, training_outputs = random.choice(training_sets)
201 #     nn.train(training_inputs, training_outputs)
202 #     print(i, nn.calculate_total_error(training_sets))

 

  

  最后写到这里就结束了,如今还不会用latex编辑数学公式,原本都直接想写在草稿纸上而后扫描了传上来,可是以为太影响阅读体验了。之后会用公式编辑器后再重把公式从新编辑一遍。稳重使用的是sigmoid激活函数,实际还有几种不一样的激活函数能够选择,具体的能够参考文献[3],最后推荐一个在线演示神经网络变化的网址:http://www.emergentmind.com/neural-network,能够本身填输入输出,而后观看每一次迭代权值的变化,很好玩~若是有错误的或者不懂的欢迎留言:)

 

参考文献:

1.Poll的笔记:[Mechine Learning & Algorithm] 神经网络基础http://www.cnblogs.com/maybe2030/p/5597716.html#3457159 )

2.Rachel_Zhang:http://blog.csdn.net/abcjennifer/article/details/7758797

3.http://www.cedar.buffalo.edu/%7Esrihari/CSE574/Chap5/Chap5.3-BackProp.pdf

4.https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

 

------------------------------------本博客全部内容以学习、研究和分享为主,如需转载,请联系本人,标明做者和出处,而且是非商业用途,谢谢!--------------------------------