词嵌入技术解析(二)

在文章词嵌入的那些事儿(一)中,我们得到了以下结论: 词嵌入是一种把词从高维稀疏向量映射到了相对低维的实数向量上的表达方式。 Skip-Gram和CBOW的作用是构造神经网络的训练数据。 目前设计的网络结构实际上是由DNN+softmax()组成。 计算词嵌入向量实际上就是在计算隐藏层的权矩阵。 对于单位矩阵的每一维(行)与实矩阵相乘,可以简化为查找元素1的位置索引从而快速完成计算。 本文主要是在
相关文章
相关标签/搜索