深度学习中“过拟合”的产生原因和解决方法

过拟合定义:模型在训练集上的表现很好,但在测试集和新数据上的表现很差。 训练集上的表现 测试集上的表现 结论 不好 不好 欠拟合 好 不好 过拟合 好 好 适度拟合 原因 训练数据集太小,过拟合出现的原因: 模型复杂度过高,参数过多 数量数据比较小 训练集和测试集分布不一致 样本里面的噪声数据干扰过大,导致模型过分记住了噪声特征,反而忽略了真实的输入输出特征 训练集和测试集特征分布不一样(如果训练
相关文章
相关标签/搜索