python concurrent.futures

python由于其全局解释器锁GIL而没法经过线程实现真正的平行计算。这个论断咱们不展开,可是有个概念咱们要说明,IO密集型 vs. 计算密集型。html

IO密集型:读取文件,读取网络套接字频繁。python

计算密集型:大量消耗CPU的数学与逻辑运算,也就是咱们这里说的平行计算。网络

而concurrent.futures模块,能够利用multiprocessing实现真正的平行计算。多线程

核心原理是:concurrent.futures会以子进程的形式,平行的运行多个python解释器,从而令python程序能够利用多核CPU来提高执行速度。因为子进程与主解释器相分离,因此他们的全局解释器锁也是相互独立的。每一个子进程都可以完整的使用一个CPU内核。并发

 

 第一章 concurrent.futures性能阐述app

  • 最大公约数

这个函数是一个计算密集型的函数。异步

# -*- coding:utf-8 -*-
# 求最大公约数
def gcd(pair):
    a, b = pair
    low = min(a, b)
    for i in range(low, 0, -1):
        if a % i == 0 and b % i == 0:
            return i

numbers = [
    (1963309, 2265973), (1879675, 2493670), (2030677, 3814172),
    (1551645, 2229620), (1988912, 4736670), (2198964, 7876293)
]

 

  • 不使用多线程/多进程
import time

start = time.time()
results = list(map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start)

Took 2.507 seconds.

消耗时间是:2.507。socket

 

  • 多线程ThreadPoolExecutor
import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
pool = ThreadPoolExecutor(max_workers=2)
results = list(pool.map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start)

Took 2.840 seconds.

消耗时间是:2.840。async

上面说过gcd是一个计算密集型函数,由于GIL的缘由,多线程是没法提高效率的。同时,线程启动的时候,有必定的开销,与线程池进行通讯,也会有开销,因此这个程序使用了多线程反而更慢了。函数

 

  • 多进程ProcessPoolExecutor
import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
pool = ProcessPoolExecutor(max_workers=2)
results = list(pool.map(gcd, numbers))
end = time.time()
print 'Took %.3f seconds.' % (end - start)

Took 1.861 seconds.

消耗时间:1.861。

在两个CPU核心的机器上运行多进程程序,比其余两个版本都快。这是由于,ProcessPoolExecutor类会利用multiprocessing模块所提供的底层机制,完成下列操做:

1)把numbers列表中的每一项输入数据都传给map。

2)用pickle模块对数据进行序列化,将其变成二进制形式。

3)经过本地套接字,将序列化以后的数据从煮解释器所在的进程,发送到子解释器所在的进程。

4)在子进程中,用pickle对二进制数据进行反序列化,将其还原成python对象。

5)引入包含gcd函数的python模块。

6)各个子进程并行的对各自的输入数据进行计算。

7)对运行的结果进行序列化操做,将其转变成字节。

8)将这些字节经过socket复制到主进程之中。

9)主进程对这些字节执行反序列化操做,将其还原成python对象。

10)最后,把每一个子进程所求出的计算结果合并到一份列表之中,并返回给调用者。

multiprocessing开销比较大,缘由就在于:主进程和子进程之间通讯,必须进行序列化和反序列化的操做。

 

 

第二章 concurrent.futures源码分析

  • Executor

能够任务Executor是一个抽象类,提供了以下抽象方法submit,map(上面已经使用过),shutdown。值得一提的是Executor实现了__enter__和__exit__使得其对象能够使用with操做符。关于上下文管理和with操做符详细请参看这篇博客http://www.cnblogs.com/kangoroo/p/7627167.html

ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来建立线程池和进程池的代码。

class Executor(object):
    """This is an abstract base class for concrete asynchronous executors."""

    def submit(self, fn, *args, **kwargs):
        """Submits a callable to be executed with the given arguments.

        Schedules the callable to be executed as fn(*args, **kwargs) and returns
        a Future instance representing the execution of the callable.

        Returns:
            A Future representing the given call.
        """
        raise NotImplementedError()

    def map(self, fn, *iterables, **kwargs):
        """Returns a iterator equivalent to map(fn, iter).

        Args:
            fn: A callable that will take as many arguments as there are
                passed iterables.
            timeout: The maximum number of seconds to wait. If None, then there
                is no limit on the wait time.

        Returns:
            An iterator equivalent to: map(func, *iterables) but the calls may
            be evaluated out-of-order.

        Raises:
            TimeoutError: If the entire result iterator could not be generated
                before the given timeout.
            Exception: If fn(*args) raises for any values.
        """
        timeout = kwargs.get('timeout')
        if timeout is not None:
            end_time = timeout + time.time()

        fs = [self.submit(fn, *args) for args in itertools.izip(*iterables)]

        # Yield must be hidden in closure so that the futures are submitted
        # before the first iterator value is required.
        def result_iterator():
            try:
                for future in fs:
                    if timeout is None:
                        yield future.result()
                    else:
                        yield future.result(end_time - time.time())
            finally:
                for future in fs:
                    future.cancel()
        return result_iterator()

    def shutdown(self, wait=True):
        """Clean-up the resources associated with the Executor.

        It is safe to call this method several times. Otherwise, no other
        methods can be called after this one.

        Args:
            wait: If True then shutdown will not return until all running
                futures have finished executing and the resources used by the
                executor have been reclaimed.
        """
        pass

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.shutdown(wait=True)
        return False

下面咱们以线程ProcessPoolExecutor的方式说明其中的各个方法。

 

  • map
map(self, fn, *iterables, **kwargs)

map方法的实例咱们上面已经实现过,值得注意的是,返回的results列表是有序的,顺序和*iterables迭代器的顺序一致。

这里咱们使用with操做符,使得当任务执行完成以后,自动执行shutdown函数,而无需编写相关释放代码。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
    results = list(pool.map(gcd, numbers))
print 'results: %s' % results
end = time.time()
print 'Took %.3f seconds.' % (end - start)

产出结果是:

results: [1, 5, 1, 5, 2, 3]
Took 1.617 seconds.

 

  • submit
submit(self, fn, *args, **kwargs)

submit方法用于提交一个可并行的方法,submit方法同时返回一个future实例。

future对象标识这个线程/进程异步进行,并在将来的某个时间执行完成。future实例表示线程/进程状态的回调。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor

start = time.time()
futures = list()
with ProcessPoolExecutor(max_workers=2) as pool:
    for pair in numbers:
        future = pool.submit(gcd, pair)
        futures.append(future)
print 'results: %s' % [future.result() for future in futures]
end = time.time()
print 'Took %.3f seconds.' % (end - start)

产出结果是:

results: [1, 5, 1, 5, 2, 3]
Took 2.289 seconds.

 

  • future

submit函数返回future对象,future提供了跟踪任务执行状态的方法。好比判断任务是否执行中future.running(),判断任务是否执行完成future.done()等等。

as_completed方法传入futures迭代器和timeout两个参数

默认timeout=None,阻塞等待任务执行完成,并返回执行完成的future对象迭代器,迭代器是经过yield实现的。 

timeout>0,等待timeout时间,若是timeout时间到仍有任务未能完成,再也不执行并抛出异常TimeoutError

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor, as_completed

start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
    futures = [ pool.submit(gcd, pair) for pair in numbers]
    for future in futures:
        print '执行中:%s, 已完成:%s' % (future.running(), future.done())
    print '#### 分界线 ####'
    for future in as_completed(futures, timeout=2):
        print '执行中:%s, 已完成:%s' % (future.running(), future.done())
end = time.time()
print 'Took %.3f seconds.' % (end - start)

 

  • wait

wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另一个是uncompleted(未完成的)。

使用wait方法的一个优点就是得到更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION和ALL_COMPLETE,默认设置为ALL_COMPLETED。

import time
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, Executor, as_completed, wait, ALL_COMPLETED, FIRST_COMPLETED, FIRST_EXCEPTION

start = time.time()
with ProcessPoolExecutor(max_workers=2) as pool:
    futures = [ pool.submit(gcd, pair) for pair in numbers]
    for future in futures:
        print '执行中:%s, 已完成:%s' % (future.running(), future.done())
    print '#### 分界线 ####'
    done, unfinished = wait(futures, timeout=2, return_when=ALL_COMPLETED)
    for d in done:
        print '执行中:%s, 已完成:%s' % (d.running(), d.done())
        print d.result()
end = time.time()
print 'Took %.3f seconds.' % (end - start)

因为设置了ALL_COMPLETED,因此wait等待全部的task执行完成,能够看到6个任务都执行完成了。

执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:False, 已完成:False
执行中:False, 已完成:False
#### 分界线 ####
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
执行中:False, 已完成:True
Took 1.518 seconds.

 

若是咱们将配置改成FIRST_COMPLETED,wait会等待直到第一个任务执行完成,返回当时全部执行成功的任务。这里并无作并发控制。

重跑,结构以下,能够看到执行了2个任务。

执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:True, 已完成:False
执行中:False, 已完成:False
执行中:False, 已完成:False
#### 分界线 ####
执行中:False, 已完成:True
执行中:False, 已完成:True
Took 1.517 seconds.
相关文章
相关标签/搜索