逻辑回归代价函数及其梯度下降公式

前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程。接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点的特征值 y(i) 每个样本数据的所属类别标签 m 样本数据点的个数 hθ(x) 样本数据的概率密度函数,即某个数据属于1类(二分类问题)的概率 J(θ) 代价函数,估计样本属于某类的风险程度,越小代表
相关文章
相关标签/搜索