数据集类别不平衡问题

类别不平衡问题: 类别不平衡问题指分类任务中不同类别的训练样本数目差别很大的情况。一般来说,不平衡样本会导致训练模型侧重样本数目较多的类别,而“轻视”样本数目较少类别,这样模型在测试数据上的泛化能力就会受到影响。一个例子,训练集中有99个正例样本,1个负例样本。在不考虑样本不平衡的很多情况下,学习算法会使分类器放弃负例预测,因为把所有样本都分为正便可获得高达99%的训练分类准确率。 数据集方面进行
相关文章
相关标签/搜索