大数据分析与机器学习领域Python兵器谱

http://www.thebigdata.cn/JieJueFangAn/13317.htmlhtml

 

曾经由于NLTK的缘故开始学习Python,以后渐渐成为我工做中的第一辅助脚本语言,虽然开发语言是C/C++,但平时的很 多文本数据处理任务都交给了Python。离开腾讯创业后,第一个做品课程图谱也是选择了Python系的Flask框架,渐渐的将本身的绝大部分工做交 给了Python。这些年来,接触和使用了不少Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有不少不少优秀的Python 工具包可供使用,因此做为Pythoner,也是至关幸福的。其实若是仔细留意微博,你会发现不少这方面的分享,本身也Google了一下,发现也有同窗 总结了“Python机器学习库”,不过总感受缺乏点什么。最近流行一个词,全栈工程师(full stack engineer),做为一个苦逼的创业者,自然的要把本身打形成一个full stack engineer,而这个过程当中,这些Python工具包给本身提供了足够的火力,因此想起了这个系列。固然,这也仅仅是抛砖引玉,但愿你们能提供更多的 线索,来汇总整理一套Python网页爬虫,文本处理,科学计算,机器学习和数据挖掘的兵器谱。python

 

1、Python网页爬虫工具集git

一 个真实的项目,必定是从获取数据开始的。不管文本处理,机器学习和数据挖掘,都须要数据,除了经过一些渠道购买或者下载的专业数据外,经常须要你们本身动 手爬数据,这个时候,爬虫就显得格外重要了,幸亏,Python提供了一批很不错的网页爬虫工具框架,既能爬取数据,也能获取和清洗数据,咱们也就从这里 开始了:github

 

1. Scrapyweb

Scrapy, a fast high-level screen scraping and web crawling framework for Python.算法

鼎鼎大名的Scrapy,相信很多同窗都有耳闻,课程图谱中的不少课程都是依靠Scrapy抓去的,这方面的介绍文章有不少,推荐大牛pluskid早年的一篇文章:《Scrapy 轻松定制网络爬虫》,历久弥新。shell

官方主页:http://scrapy.org/
Github代码页: https://github.com/scrapy/scrapyexpress

 

2. Beautiful Soup编程

You didn’t write that awful page. You’re just trying to get some data out of it. Beautiful Soup is here to help. Since 2004, it’s been saving programmers hours or days of work on quick-turnaround screen scraping projects.json

读书的时候经过《集体智慧编程》这本书知道Beautiful Soup的,后来也偶尔会用用,很是棒的一套工具。客观的说,Beautifu Soup不彻底是一套爬虫工具,须要配合urllib使用,而是一套HTML/XML数据分析,清洗和获取工具。

官方主页:http://www.crummy.com/software/BeautifulSoup/

 

3. Python-Goose

Html Content / Article Extractor, web scrapping lib in Python

Goose最先是用Java写得,后来用Scala重写,是一个Scala项目。Python-Goose用Python重写,依赖了Beautiful Soup。前段时间用过,感受很不错,给定一个文章的URL, 获取文章的标题和内容很方便。

Github主页:https://github.com/grangier/python-goose

 

2、Python文本处理工具集

从 网页上获取文本数据以后,依据任务的不一样,就须要进行基本的文本处理了,譬如对于英文来讲,须要基本的tokenize,对于中文,则须要常见的中文分 词,进一步的话,不管英文中文,还能够词性标注,句法分析,关键词提取,文本分类,情感分析等等。这个方面,特别是面向英文领域,有不少优秀的工具包,我 们一一道来。

 

1. NLTK — Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.

搞天然语言处理的同窗应该没有人不知道NLTK吧,这里也就很少说了。不过推荐 两本书籍给刚刚接触NLTK或者须要详细了解NLTK的同窗: 一个是官方的《Natural Language Processing with Python》,以介绍NLTK里的功能用法为主,同时附带一些Python知识,同时国内陈涛同窗友情翻译了一个中文版,这里能够看到:推荐《用 Python进行天然语言处理》中文翻译-NLTK配套书;另一本是《Python Text Processing with NLTK 2.0 Cookbook》,这本书要深刻一些,会涉及到NLTK的代码结构,同时会介绍如何定制本身的语料和模型等,至关不错。

官方主页:http://www.nltk.org/
Github代码页:https://github.com/nltk/nltk

 

2. Pattern

Pattern is a web mining module for the Python programming language.

It has tools for data mining (Google, Twitter and Wikipedia API, a web crawler, a HTML DOM parser), natural language processing (part-of-speech taggers, n-gram search, sentiment analysis, WordNet), machine learning (vector space model, clustering, SVM), network analysis and canvas visualization.

Pattern由比利时安特卫普大学CLiPS实验室出品,客 观的说,Pattern不只仅是一套文本处理工具,它更是一套web数据挖掘工具,囊括了数据抓取模块(包括Google, Twitter, 维基百科的API,以及爬虫和HTML分析器),文本处理模块(词性标注,情感分析等),机器学习模块(VSM, 聚类,SVM)以及可视化模块等,能够说,Pattern的这一整套逻辑也是这篇文章的组织逻辑,不过这里咱们暂且把Pattern放到文本处理部分。我 我的主要使用的是它的英文处理模块Pattern.en, 有不少很不错的文本处理功能,包括基础的tokenize, 词性标注,句子切分,语法检查,拼写纠错,情感分析,句法分析等,至关不错。

官方主页:http://www.clips.ua.ac.be/pattern

 

3. TextBlob: Simplified Text Processing

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.

TextBlob 是一个颇有意思的Python文本处理工具包,它实际上是基于上面两个Python工具包NLKT和Pattern作了封装(TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both),同时提供了不少文本处理功能的接口,包括词性标注,名词短语提取,情感分析,文本分类,拼写检查等,甚至包括翻译和语言检测,不过这个是基于 Google的API的,有调用次数限制。TextBlob相对比较年轻,有兴趣的同窗能够关注。

官方主页:http://textblob.readthedocs.org/en/dev/
Github代码页:https://github.com/sloria/textblob

 

4. MBSP for Python

MBSP is a text analysis system based on the TiMBL and MBT memory based learning applications developed at CLiPS and ILK. It provides tools for Tokenization and Sentence Splitting, Part of Speech Tagging, Chunking, Lemmatization, Relation Finding and Prepositional Phrase Attachment.

MBSP与Pattern同源,同出自比利时安特卫普大学CLiPS实验室,提供了Word Tokenization, 句子切分,词性标注,Chunking, Lemmatization,句法分析等基本的文本处理功能,感兴趣的同窗能够关注。

官方主页:http://www.clips.ua.ac.be/pages/MBSP

 

5. Gensim: Topic modeling for humans

Gensim是一个至关专业的主题模型Python工具包,不管是代码仍是文档,咱们曾经用《如何计算两个文档的类似度》介绍过Gensim的安装和使用过程,这里就很少说了。

官方主页:http://radimrehurek.com/gensim/index.html
github代码页:https://github.com/piskvorky/gensim

 

6. langid.py: Stand-alone language identification system

语 言检测是一个颇有意思的话题,不过相对比较成熟,这方面的解决方案不少,也有不少不错的开源工具包,不过对于Python来讲,我使用过langid这个 工具包,也很是愿意推荐它。langid目前支持97种语言的检测,提供了不少易用的功能,包括能够启动一个建议的server,经过json调用其 API,可定制训练本身的语言检测模型等,能够说是“麻雀虽小,五脏俱全”。

Github主页:https://github.com/saffsd/langid.py

 

7. Jieba: 结巴中文分词

“结 巴”中文分词:作最好的Python中文分词组件 “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module.

好了,终于能够说一个国内的Python文本处理工具包了:结巴分词,其功能包括支持三种分词模式(精确模式、全模式、搜索引擎模式),支持繁体分词,支持自定义词典等,是目前一个很是不错的Python中文分词解决方案。

Github主页:https://github.com/fxsjy/jieba

 

8. xTAS

xtas, the eXtensible Text Analysis Suite, a distributed text analysis package based on Celery and Elasticsearch.

感谢微博朋友 @大山坡的春 提供的线索:咱们组同事以前发布了xTAS,也是基于python的text mining工具包,欢迎使用,连接:http://t.cn/RPbEZOW。看起来很不错的样子,回头试用一下。

Github代码页:https://github.com/NLeSC/xtas

 

3、Python科学计算工具包

说 起科学计算,你们首先想起的是Matlab,集数值计算,可视化工具及交互于一身,不过惋惜是一个商业产品。开源方面除了GNU Octave在尝试作一个相似Matlab的工具包外,Python的这几个工具包集合到一块儿也能够替代Matlab的相应功 能:NumPy+SciPy+Matplotlib+iPython。同时,这几个工具包,特别是NumPy和SciPy,也是不少Python文本处理 & 机器学习 & 数据挖掘工具包的基础,很是重要。最后再推荐一个系列《用Python作科学计算》,将会涉及到NumPy, SciPy, Matplotlib,能够作参考。

 

1. NumPy

NumPy is the fundamental package for scientific computing with Python. It contains among other things:
1)a powerful N-dimensional array object
2)sophisticated (broadcasting) functions
3)tools for integrating C/C++ and Fortran code
4) useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

NumPy几乎是一个没法回避的科学 计算工具包,最经常使用的也许是它的N维数组对象,其余还包括一些成熟的函数库,用于整合C/C++和Fortran代码的工具包,线性代数、傅里叶变换和随 机数生成函数等。NumPy提供了两种基本的对象:ndarray(N-dimensional array object)和 ufunc(universal function object)。ndarray是存储单一数据类型的多维数组,而ufunc则是可以对数组进行处理的函数。

官方主页:http://www.numpy.org/

 

2. SciPy:Scientific Computing Tools for Python

SciPy refers to several related but distinct entities:

1)The SciPy Stack, a collection of open source software for scientific computing in Python, and particularly a specified set of core packages.
2)The community of people who use and develop this stack.
3)Several conferences dedicated to scientific computing in Python – SciPy, EuroSciPy and SciPy.in.
4)The SciPy library, one component of the SciPy stack, providing many numerical routines.

“SciPy 是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常 微分方程求解和其余科学与工程中经常使用的计算。其功能与软件MATLAB、Scilab和GNU Octave相似。 Numpy和Scipy经常结合着使用,Python大多数机器学习库都依赖于这两个模块。”—-引用自“Python机器学习库”

官方主页:http://www.scipy.org/

 

3. Matplotlib

matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell (ala MATLAB®* or Mathematica®†), web application servers, and six graphical user interface toolkits.

matplotlib 是python最著名的绘图库,它提供了一整套和matlab类似的命令API,十分适合交互式地进行制图。并且也能够方便地将它做为绘图控件,嵌入 GUI应用程序中。Matplotlib能够配合ipython shell使用,提供不亚于Matlab的绘图体验,总之用过了都说好。

官方主页:http://matplotlib.org/

 

4. iPython

IPython provides a rich architecture for interactive computing with:

1)Powerful interactive shells (terminal and Qt-based).
2)A browser-based notebook with support for code, text, mathematical expressions, inline plots and other rich media.
3)Support for interactive data visualization and use of GUI toolkits.
4)Flexible, embeddable interpreters to load into your own projects.
5)Easy to use, high performance tools for parallel computing.

“iPython 是一个Python 的交互式Shell,比默认的Python Shell 好用得多,功能也更强大。 她支持语法高亮、自动完成、代码调试、对象自省,支持 Bash Shell 命令,内置了许多颇有用的功能和函式等,很是容易使用。 ” 启动iPython的时候用这个命令“ipython –pylab”,默认开启了matploblib的绘图交互,用起来很方便。

官方主页:http://ipython.org/

 

4、Python 机器学习 & 数据挖掘 工具包

机器学习和数据挖掘这两个概念不太好区分,这里就放到一块儿了。这方面的开源Python工具包有不少,这里先从熟悉的讲起,再补充其余来源的资料,也欢迎你们补充。

 

1. scikit-learn: Machine Learning in Python

scikit-learn (formerly scikits.learn) is an open source machine learning library for the Python programming language. It features various classification, regression and clustering algorithms including support vector machines, logistic regression, naive Bayes, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy.

首 先推荐大名鼎鼎的scikit-learn,scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM, 逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都很是不错,在许多Python项目中都有应用。例如在咱们熟悉的NLTK中,分类器 方面就有专门针对scikit-learn的接口,能够调用scikit-learn的分类算法以及训练数据来训练分类器模型。这里推荐一个视频,也是我 早期遇到scikit-learn的时候推荐过的:推荐一个Python机器学习工具包Scikit-learn以及相关视频–Tutorial: scikit-learn – Machine Learning in Python

官方主页:http://scikit-learn.org/

 

2. Pandas: Python Data Analysis Library

Pandas is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series.

第 一次接触Pandas是因为Udacity上的一门数据分析课程“Introduction to Data Science” 的Project须要用Pandas库,因此学习了一下Pandas。Pandas也是基于NumPy和Matplotlib开发的,主要用于数据分析和 数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有本身的一套分析机制,很是不错。这里推荐一 本书《Python for Data Analysis》,做者是Pandas的主力开发,依次介绍了iPython, NumPy, Pandas里的相关功能,数据可视化,数据清洗和加工,时间数据处理等,案例包括金融股票数据挖掘等,至关不错。

官方主页:http://pandas.pydata.org/

=======================================================
分割线,以上工具包基本上都是本身用过的,如下来源于其余同窗的线索,特别是《Python机器学习库》,《23个python的机器学习包》,作了一点增删修改,欢迎你们补充
========================================================

mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and the GNU Scientific Libraries.

mlpy provides a wide range of state-of-the-art machine learning methods for supervised and unsupervised problems and it is aimed at finding a reasonable compromise among modularity, maintainability, reproducibility, usability and efficiency. mlpy is multiplatform, it works with Python 2 and 3 and it is Open Source, distributed under the GNU General Public License version 3.

官方主页:http://mlpy.sourceforge.net/

 

4. MDP:The Modular toolkit for Data Processing

Modular toolkit for Data Processing (MDP) is a Python data processing framework.
From the user’s perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures.
From the scientific developer’s perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library.
The base of available algorithms is steadily increasing and includes signal processing methods (Principal Component Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hessian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-processing methods, and many others.

“MDP 用于数据处理的模块化工具包,一个Python数据处理框架。 从用户的观点,MDP是可以被整合到数据处理序列和更复杂的前馈网络结构的一批监督学习和非监督学习算法和其余数据处理单元。计算依照速度和内存需求而高 效的执行。从科学开发者的观点,MDP是一个模块框架,它可以被容易地扩展。新算法的实现是容易且直观的。新实现的单元而后被自动地与程序库的其他部件进 行整合。MDP在神经科学的理论研究背景下被编写,可是它已经被设计为在使用可训练数据处理算法的任何状况中都是有用的。其站在用户一边的简单性,各类不 同的随时可用的算法,及应用单元的可重用性,使得它也是一个有用的教学工具。”

官方主页:http://mdp-toolkit.sourceforge.net/

 

5. PyBrain

PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks and a variety of predefined environments to test and compare your algorithms.

PyBrain is short for Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network Library. In fact, we came up with the name first and later reverse-engineered this quite descriptive “Backronym”.

“PyBrain(Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network)是Python的一个机器学习模块,它的目标是为机器学习任务提供灵活、易应、强大的机器学习算法。(这名字很霸气)

PyBrain正如其名,包括神经网络、强化学习(及两者结合)、无监督学习、进化算法。由于目前的许多问题须要处理连续态和行为空间,必须使用函数逼近(如神经网络)以应对高维数据。PyBrain以神经网络为核心,全部的训练方法都以神经网络为一个实例。”

官方主页:http://www.pybrain.org/

 

6. PyML – machine learning in Python

PyML is an interactive object oriented framework for machine learning written in Python. PyML focuses on SVMs and other kernel methods. It is supported on Linux and Mac OS X.

“PyML是一个Python机器学习工具包,为各分类和回归方法提供灵活的架构。它主要提供特征选择、模型选择、组合分类器、分类评估等功能。”

项目主页:http://pyml.sourceforge.net/

 

7. Milk:Machine learning toolkit in Python.

Its focus is on supervised classification with several classifiers available:
SVMs (based on libsvm), k-NN, random forests, decision trees. It also performs
feature selection. These classifiers can be combined in many ways to form
different classification systems.

“Milk 是Python的一个机器学习工具箱,其重点是提供监督分类法与几种有效的分类分析:SVMs(基于libsvm),K-NN,随机森林经济和决策树。它 还能够进行特征选择。这些分类能够在许多方面相结合,造成不一样的分类系统。对于无监督学习,它提供K-means和affinity propagation聚类算法。”

官方主页:http://luispedro.org/software/milk

http://luispedro.org/software/milk

 

8. PyMVPA: MultiVariate Pattern Analysis (MVPA) in Python

PyMVPA is a Python package intended to ease statistical learning analyses of large datasets. It offers an extensible framework with a high-level interface to a broad range of algorithms for classification, regression, feature selection, data import and export. It is designed to integrate well with related software packages, such as scikit-learn, and MDP. While it is not limited to the neuroimaging domain, it is eminently suited for such datasets. PyMVPA is free software and requires nothing but free-software to run.

“PyMVPA(Multivariate Pattern Analysis in Python)是为大数据集提供统计学习分析的Python工具包,它提供了一个灵活可扩展的框架。它提供的功能有分类、回归、特征选择、数据导入导出、可视化等”

官方主页:http://www.pymvpa.org/

 

9. Pyrallel – Parallel Data Analytics in Python

Experimental project to investigate distributed computation patterns for machine learning and other semi-interactive data analytics tasks.

“Pyrallel(Parallel Data Analytics in Python)基于分布式计算模式的机器学习和半交互式的试验项目,可在小型集群上运行”

Github代码页:http://github.com/pydata/pyrallel

 

10. Monte – gradient based learning in Python

Monte (python) is a Python framework for building gradient based learning machines, like neural networks, conditional random fields, logistic regression, etc. Monte contains modules (that hold parameters, a cost-function and a gradient-function) and trainers (that can adapt a module’s parameters by minimizing its cost-function on training data).

Modules are usually composed of other modules, which can in turn contain other modules, etc. Gradients of decomposable systems like these can be computed with back-propagation.

“Monte (machine learning in pure Python)是一个纯Python机器学习库。它能够迅速构建神经网络、条件随机场、逻辑回归等模型,使用inline-C优化,极易使用和扩展。”

官方主页:http://montepython.sourceforge.net

 

11. Theano

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Theano features:
1)tight integration with NumPy – Use numpy.ndarray in Theano-compiled functions.
2)transparent use of a GPU – Perform data-intensive calculations up to 140x faster than with CPU.(float32 only)
3)efficient symbolic differentiation – Theano does your derivatives for function with one or many inputs.
4)speed and stability optimizations – Get the right answer for log(1+x) even when x is really tiny.
5)dynamic C code generation – Evaluate expressions faster.
6) extensive unit-testing and self-verification – Detect and diagnose many types of mistake.
Theano has been powering large-scale computationally intensive scientific investigations since 2007. But it is also approachable enough to be used in the classroom (IFT6266 at the University of Montreal).

“Theano 是一个 Python 库,用来定义、优化和模拟数学表达式计算,用于高效的解决多维数组的计算问题。Theano的特色:紧密集成Numpy;高效的数据密集型GPU计算;高 效的符号微分运算;高速和稳定的优化;动态生成c代码;普遍的单元测试和自我验证。自2007年以来,Theano已被普遍应用于科学运算。theano 使得构建深度学习模型更加容易,能够快速实现多种模型。PS:Theano,一位希腊美女,Croton最有权势的Milo的女儿,后来成为了毕达哥拉斯 的老婆。”

 

12. Pylearn2

Pylearn2 is a machine learning library. Most of its functionality is built on top of Theano. This means you can write Pylearn2 plugins (new models, algorithms, etc) using mathematical expressions, and theano will optimize and stabilize those expressions for you, and compile them to a backend of your choice (CPU or GPU).

“Pylearn2创建在theano上,部分依赖scikit-learn上,目前Pylearn2正处于开发中,将能够处理向量、图像、视频等数据,提供MLP、RBM、SDA等深度学习模型。”

官方主页:http://deeplearning.net/software/pylearn2/

其余的,欢迎你们补充,这里也会持续更新这篇文章。

相关文章
相关标签/搜索