3.kafka数据存储和ack

须要看图学习java

producer生产数据,经过ack发送到kafka 中broker(每台机器的节点不同)对应的partition,数组

  • 存数据:partition存放在pagecache中,最终持久化到磁盘中缓存

  • 取数据: consumer先到达kernel,kernel通知partition获取元数据,而后调起senfile(in,offset, out),sendfile先去pagecache拿数据,拿不到去磁盘并缓存到pagecache,发送给sendfile,使用了0拷贝模式(不把数据拷贝给应用kafka)网络

 

数据存储方式app

基础:
    数组 大小固定 空间上是连续的 计算方式找到方便
    链表 大小不固定 空间上不连续 遍历复杂度高 须要创建索引

数据存储方式是链表 须要维护本身的索引,索引有两种方式:1.offset 2.timestamp 其实timestamp能够转换成offset

 

producer生产数据到kafka的partition ack有三种方式ide

ack=0: 无论kafka的partition状态,只往里面发数据,由于不获取kafka分区的回调信息
ack=1: 往kafka发数据,只要有leader存活(broker抢到controller),就往kafka发数据,由于须要partition返回确认信息
ack=-1: 往kafaka发数据,当发数据的时候出现网络波动、副本或者主机死掉,那么会出现短暂的卡顿,以后会正常发数据,由于ack=-1须要全部的ISR返回ok信息,若是没有返回的会把该副本T出ISR

 

一些语义性能

ISR: in-sync replicas 存活的副本

OSR: outof-sync replicas 超过阈值时间10秒,没有心跳的副本(死掉的副本)

AR: assigned replicas 面向分区的副本集合  AR = ISR + OSR

LW:、HW、LEO看图理解

 

建立topic查看ISR学习

[root@ke03 ~]# kafka-topics.sh --zookeeper ke02:2181,ke03:2181/kafka --create --topic xiaoke-items --partitions 2 --replication-factor 3
Created topic xiaoke-items.
[root@ke03 ~]# kafka-topics.sh --zookeeper ke02:2181,ke03:2181/kafka --describe --topic xiaoke-items
Topic:xiaoke-items    PartitionCount:2    ReplicationFactor:3    Configs:
    Topic: xiaoke-items    Partition: 0    Leader: 2    Replicas: 2,3,1    Isr: 2,3,1
    Topic: xiaoke-items    Partition: 1    Leader: 3    Replicas: 3,1,2    Isr: 3,1,2

partition0: 在2节点 副本在1,2,3节点 共三个 ISR存活的副本1,2,3

 

 

追踪进程,发现日志是经过网络IO发送的测试

[root@ke03 xiaoke-items-0]# jps
11957 Kafka
[root@ke03 xiaoke-items-0]# lsof -Pnp 11957
COMMAND   PID USER   FD   TYPE             DEVICE SIZE/OFF    NODE NAME
java    11957 root  cwd    DIR                8,3     4096  924176 /opt/bigdata/kafka/config
java    11957 root  143u   REG                8,3        0  262735 /var/kafka_data/xiaoke-items-1/00000000000000000000.log
java    11957 root  144u   REG                8,3        0  262740 /var/kafka_data/xiaoke-items-0/00000000000000000000.log


问:为何log不用mmap, 而用普通IO呢?
log使用普通io的形式目的是通用性
数据存入磁盘的可靠性级别
app层级
调用了io的write,可是这个时候只是到达了内核,性能快,可是丢数据
只有NIO的filechannel,你调用了write()+force(),才真的写到磁盘,性能极低的
1.每条都force
2.只是write基于内核刷写机制,靠脏页

java中:
传统的io, io.flush是个空实现,没有物理刷盘,仍是依赖内核的dirty刷盘,因此,会丢东西

 

 

向topic:xiaoke-items 生产数据日志

key: item0 val: val0 partition: 1 offset: 0
key: item1 val: val0 partition: 0 offset: 0
key: item2 val: val0 partition: 1 offset: 1
key: item0 val: val1 partition: 1 offset: 2
key: item1 val: val1 partition: 0 offset: 1
key: item2 val: val1 partition: 1 offset: 3
key: item0 val: val2 partition: 1 offset: 4
key: item1 val: val2 partition: 0 offset: 2
key: item2 val: val2 partition: 1 offset: 5
key: item0 val: val0 partition: 1 offset: 6
key: item1 val: val0 partition: 0 offset: 3
key: item2 val: val0 partition: 1 offset: 7
key: item0 val: val1 partition: 1 offset: 8
key: item1 val: val1 partition: 0 offset: 4
key: item2 val: val1 partition: 1 offset: 9

查看日志:
[root@ke03 xiaoke-items-0]# ll -h
total 8.0K
-rw-r--r-- 1 root root 10M Jul 26 10:30 00000000000000000000.index
-rw-r--r-- 1 root root 385 Jul 26 11:25 00000000000000000000.log
-rw-r--r-- 1 root root 10M Jul 26 10:30 00000000000000000000.timeindex
-rw-r--r-- 1 root root   8 Jul 26 11:25 leader-epoch-checkpoint

查看kafka日志文件
[root@ke03 xiaoke-items-0]# kafka-dump-log.sh --files 00000000000000000000.log  | more
Dumping 00000000000000000000.log
Starting offset: 0
baseOffset: 0 lastOffset: 0 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 0 CreateTime: 1627396648184 size: 77 magic: 2 compresscodec: NO
NE crc: 1546433855 isvalid: true
baseOffset: 1 lastOffset: 1 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 77 CreateTime: 1627396651246 size: 77 magic: 2 compresscodec: N
ONE crc: 2422575540 isvalid: true
baseOffset: 2 lastOffset: 2 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 154 CreateTime: 1627396654287 size: 77 magic: 2 compresscodec: 
NONE crc: 674617845 isvalid: true
baseOffset: 3 lastOffset: 3 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 231 CreateTime: 1627396657309 size: 77 magic: 2 compresscodec: 
NONE crc: 1996918817 isvalid: true
baseOffset: 4 lastOffset: 4 count: 1 baseSequence: -1 lastSequence: -1 producerId: -1 producerEpoch: -1 partitionLeaderEpoch: 0 isTransactional: false isControl: false position: 308 CreateTime: 1627396660339 size: 77 magic: 2 compresscodec: 
NONE crc: 110021385 isvalid: true

总结:能够看出向0号分区发送了0-4号数据, 4号分区的日志文件offset是4


查看index索引文件 
[root@ke03 xiaoke-items-0]# kafka-dump-log.sh --files 00000000000000000000.index 
Dumping 00000000000000000000.index
offset: 0 position: 0
为了看到效果:增长数据0号分区offset到122

[root@ke03 xiaoke-items-0]# kafka-dump-log.sh --files 00000000000000000000.index 
Dumping 00000000000000000000.index
offset: 54 position: 4158
offset: 108 position: 8316

说明:
1.position(字节数组):4158字节的位置 就是offset:54
2.目前offset是122 日志记录到108 说明:offset的索引记录是跳跃记录,优势:减小了IO次数


查看timeindex索引文件
[root@ke03 xiaoke-items-0]# kafka-dump-log.sh --files 00000000000000000000.timeindex 
Dumping 00000000000000000000.timeindex
timestamp: 1627397016578 offset: 54
timestamp: 1627397033738 offset: 108
说明: timeindex索引文件指向index索引文件的offset

取数据:
1. timeindex(offset)文件 找到offset,经过offset找到position和下一个position之间的范围,而后在这个范围内进行检索
 

 

 

测试ACK

代码修改: p.setProperty(ProducerConfig.ACKS_CONFIG, "0");

ack=0
1.生产数据
2.kill kafka
3.ISR减小一个,正常往kafka正产数据


ack=1
1.生产数据
2.kill kafka
3.ISR减小一个,正常往kafka正产数据,由于leader存活,既(broker抢到了controller的这台机器)


ack=-1
1.生产数据
2.kill kafka
3.ISR减小一个,卡顿10秒以后正常往kafka正产数据

 

 

发送和消费数据

发送数据:producer.seed()

消费数据:consumer.poll() 拉取数据

修改消费的偏移量:consumer.seek(partition,offset);

offset能够经过timestamp去转换
相关文章
相关标签/搜索