首先在pom文件中引入须要的依赖java
<dependency>
<groupId>io.shardingjdbc</groupId>
<artifactId>sharding-jdbc-core-spring-namespace</artifactId>
<version>2.0.3</version>
</dependency>
2、新建一个sharding-jdbc.xml文件,实现分库分表的配置spring
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:rdb="http://www.dangdang.com/schema/ddframe/rdb" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd http://www.dangdang.com/schema/ddframe/rdb http://www.dangdang.com/schema/ddframe/rdb/rdb.xsd"> <rdb:strategy id="tableShardingStrategy" sharding-columns="user_id" algorithm-class="com.meiren.member.common.sharding.MemberSingleKeyTableShardingAlgorithm"/> <rdb:data-source id="shardingDataSource"> <rdb:sharding-rule data-sources="dataSource"> <rdb:table-rules> <rdb:table-rule logic-table="member_index" actual-tables="member_index_tbl_${[0,1,2,3,4,5,6,7,8,9]}${0..9}" table-strategy="tableShardingStrategy"/> <rdb:table-rule logic-table="member_details" actual-tables="member_details_tbl_${[0,1,2,3,4,5,6,7,8,9]}${0..9}" table-strategy="tableShardingStrategy"/> </rdb:table-rules> </rdb:sharding-rule> </rdb:data-source> <bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="shardingDataSource" /> </bean> </beans>
这里我简单介绍下一些属性的含义,sql
<rdb:strategy id="tableShardingStrategy" sharding-columns="user_id" algorithm-class="com.meiren.member.common.sharding.MemberSingleKeyTableShardingAlgorithm"/> 配置分表规则器 sharding-columns:分表规 则 数据库
依赖的名(根据user_id取模分表),algorithm-class:分表规则的实现类 mybatis
<rdb:sharding-rule data-sources="dataSource"> 这里填写关联数据源(多个数据源用逗号隔开),测试
<rdb:table-rule logic-table="member_index" actual-tables="member_index_tbl_${[0,1,2,3,4,5,6,7,8,9]}${0..9}" table-strategy="tableShardingStrategy"/> logic-table:逻辑表名(mybatis中代替的表名)actual-tables:spa
数据库实际的表名,这里支持inline表达式,好比:member_index_tbl_${0..2}会解析成member_index_tbl_0,member_index_tbl_1,member_index_tbl_2;member_index_tbl_${[a,b,c]}会被解析成3d
member_index_tbl_a,member_index_tbl_b和member_index_tbl_c,两种表达式一块儿使用的时候,会采起笛卡尔积的方式:member_index_tbl_${[a,b]}${0..2}解析为member_index_tbl_a0,member_index_tbl_a1 member_index_tbl_a2,member_index_tbl_b0,member_index_tbl_b1,member_index_tbl_b2;table-strategy:前面定义的分表规则器;code
3、配置好改文件后,须要修改以前咱们的spring-dataSource的几个地方,把sqlSessionFactory和transactionManager原来关联的dataSource统一修改成shardingDataSource(这一步做用就是把数据源所有托管给sharding去管理)xml
4、实现分表(分库)逻辑,咱们的分表逻辑类须要实现SingleKeyTableShardingAlgorithm接口的三个方法doBetweenSharding、doEqualSharding、doInSharding
/** * 分表逻辑 * @author zhangwentao * */ public class MemberSingleKeyTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Long> { /** * sql between 规则 */ public Collection<String> doBetweenSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) { Collection<String> result = new LinkedHashSet<String>(tableNames.size()); Range<Long> range = (Range<Long>) shardingValue.getValueRange(); for (long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) { Long modValue = i % 100; String modStr = modValue < 10 ? "0" + modValue : modValue.toString(); for (String each : tableNames) { if (each.endsWith(modStr)) { result.add(each); } } } return result; } /** * sql == 规则 */ public String doEqualSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) { Long modValue = shardingValue.getValue() % 100; String modStr = modValue < 10 ? "0" + modValue : modValue.toString(); for (String each : tableNames) { if (each.endsWith(modStr)) { return each; } } throw new IllegalArgumentException(); } /** * sql in 规则 */ public Collection<String> doInSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) { Collection<String> result = new LinkedHashSet<String>(tableNames.size()); for (long value : shardingValue.getValues()) { Long modValue = value % 100; String modStr = modValue < 10 ? "0" + modValue : modValue.toString(); for (String tableName : tableNames) { if (tableName.endsWith(modStr)) { result.add(tableName); } } } return result; } }
5、以上四步,咱们就完成了sharding-jdbc的搭建,咱们能够写一个测试demo来检查咱们的成果
<select id="getDetailsById" resultType="com.meiren.member.dataobject.MemberDetailsDO" parameterType="java.lang.Long"> select user_id userId ,qq,email from member_details where user_id =#{userId} limit 1 </select>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
private
static
final
String SERVICE_PROVIDER_XML =
"/spring/member-service.xml"
;
private
static
final
String BEAN_NAME =
"idcacheService"
;
private
ClassPathXmlApplicationContext context =
null
;
IdcacheServiceImpl bean =
null
;
IdcacheDao idcacheDao;
@Before
public
void
before() {
context=
new
ClassPathXmlApplicationContext(
new
String[] {SERVICE_PROVIDER_XML});
idcacheDao=context.getBean(
"IdcacheDao"
, IdcacheDao.
class
);
}
@Test
public
void
getAllCreditActionTest() {
// int id = bean.insertIdcache();
Long s=100l;
MemberDetailsDO memberDetailsDO=idcacheDao.getDetailsById(s);
System.out.println(
"QQ---------------------"
+memberDetailsDO.getQq());
}
|
打印sql语句,输出结果:QQ-------------------------------------100,证实成功!
注意点:此次搭建过程当中,执行的时候报错,官方文档是有解决方案:引入 <context:property-placeholder location="classpath:/member_service.properties" ignore-unresolvable="true" /> ,引入这行代码的时候,·必需要要把这边管理配配置文件的bean删除,换句话说,即Spring容器仅容许最多定义一个PropertyPlaceholderConfigurer(或<context:property-placeholder/>),其他的会被Spring忽略掉