数据加载器,结合了数据集和取样器,而且能够提供多个线程处理数据集。在训练模型时使用到此函数,用来把训练数据分红多个小组,此函数每次抛出一组数据。直至把全部的数据都抛出。就是作一个数据的初始化。python
生成迭代数据很是方便,请看以下示例:数据库
""" 批训练,把数据变成一小批一小批数据进行训练。 DataLoader就是用来包装所使用的数据,每次抛出一批数据 """ import torch import torch.utils.data as Data BATCH_SIZE = 5 x = torch.linspace(1, 10, 10) y = torch.linspace(10, 1, 10) # 把数据放在数据库中 torch_dataset = Data.TensorDataset(x, y) loader = Data.DataLoader( # 从数据库中每次抽出batch size个样本 dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2, ) def show_batch(): for epoch in range(3): for step, (batch_x, batch_y) in enumerate(loader): # training print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y)) if __name__ == '__main__': show_batch()
结果:编程
咱们来看一下变量类型:机器学习
承接Matlab、Python和C++的编程,机器学习、计算机视觉的理论实现及辅导,本科和硕士的都可,咸鱼交易,详谈请联系QQ号757160542函数
本文同步分享在 博客“于小勇”(CSDN)。
若有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一块儿分享。学习