ML主要分为训练和预测两个阶段,此教程就是将训练好的模型freeze并保存下来.freeze的含义就是将该模型的图结构和该模型的权重固化到一块儿了.也即加载freeze的模型以后,马上可以使用了。node
下面使用一个简单的demo来详细解释该过程,python
1、首先运行脚本tiny_model.py网络
#-*- coding:utf-8 -*- import tensorflow as tf import numpy as np with tf.variable_scope('Placeholder'): inputs_placeholder = tf.placeholder(tf.float32, name='inputs_placeholder', shape=[None, 10]) labels_placeholder = tf.placeholder(tf.float32, name='labels_placeholder', shape=[None, 1]) with tf.variable_scope('NN'): W1 = tf.get_variable('W1', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1)) b1 = tf.get_variable('b1', shape=[1], initializer=tf.constant_initializer(0.1)) W2 = tf.get_variable('W2', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1)) b2 = tf.get_variable('b2', shape=[1], initializer=tf.constant_initializer(0.1)) a = tf.nn.relu(tf.matmul(inputs_placeholder, W1) + b1) a2 = tf.nn.relu(tf.matmul(inputs_placeholder, W2) + b2) y = tf.div(tf.add(a, a2), 2) with tf.variable_scope('Loss'): loss = tf.reduce_sum(tf.square(y - labels_placeholder) / 2) with tf.variable_scope('Accuracy'): predictions = tf.greater(y, 0.5, name="predictions") correct_predictions = tf.equal(predictions, tf.cast(labels_placeholder, tf.bool), name="correct_predictions") accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32)) adam = tf.train.AdamOptimizer(learning_rate=1e-3) train_op = adam.minimize(loss) # generate_data inputs = np.random.choice(10, size=[10000, 10]) labels = (np.sum(inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32) print('inputs.shape:', inputs.shape) print('labels.shape:', labels.shape) test_inputs = np.random.choice(10, size=[100, 10]) test_labels = (np.sum(test_inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32) print('test_inputs.shape:', test_inputs.shape) print('test_labels.shape:', test_labels.shape) batch_size = 32 epochs = 10 batches = [] print("%d items in batch of %d gives us %d full batches and %d batches of %d items" % ( len(inputs), batch_size, len(inputs) // batch_size, batch_size - len(inputs) // batch_size, len(inputs) - (len(inputs) // batch_size) * 32) ) for i in range(len(inputs) // batch_size): batch = [ inputs[batch_size*i:batch_size*i+batch_size], labels[batch_size*i:batch_size*i+batch_size] ] batches.append(list(batch)) if (i + 1) * batch_size < len(inputs): batch = [ inputs[batch_size*(i + 1):],labels[batch_size*(i + 1):] ] batches.append(list(batch)) print("Number of batches: %d" % len(batches)) print("Size of full batch: %d" % len(batches[0])) print("Size if final batch: %d" % len(batches[-1])) global_count = 0 with tf.Session() as sess: #sv = tf.train.Supervisor() #with sv.managed_session() as sess: sess.run(tf.initialize_all_variables()) for i in range(epochs): for batch in batches: # print(batch[0].shape, batch[1].shape) train_loss , _= sess.run([loss, train_op], feed_dict={ inputs_placeholder: batch[0], labels_placeholder: batch[1] }) # print('train_loss: %d' % train_loss) if global_count % 100 == 0: acc = sess.run(accuracy, feed_dict={ inputs_placeholder: test_inputs, labels_placeholder: test_labels }) print('accuracy: %f' % acc) global_count += 1 acc = sess.run(accuracy, feed_dict={ inputs_placeholder: test_inputs, labels_placeholder: test_labels }) print("final accuracy: %f" % acc) #在session当中就要将模型进行保存 saver = tf.train.Saver() last_chkp = saver.save(sess, 'results/graph.chkp') #sv.saver.save(sess, 'results/graph.chkp') for op in tf.get_default_graph().get_operations(): print(op.name)
说明:saver.save必须在session里面,由于在session里面,整个图才是激活的,才可以将参数存进来,使用save以后可以获得以下的文件:session
说明:app
.data:存放的是权重参数dom
.meta:存放的是图和metadata,metadata是其余配置的数据ui
若是想将咱们的模型固化,让别人可以使用,咱们仅仅须要的是图和参数,metadata是不须要的this
2、综合上述几个文件,生成可使用的模型的步骤以下:rest
一、恢复咱们保存的图code
二、开启一个Session,而后载入该图要求的权重
三、删除对预测无关的metadata
四、将处理好的模型序列化以后保存
运行freeze.py
#-*- coding:utf-8 -*- import os, argparse import tensorflow as tf from tensorflow.python.framework import graph_util dir = os.path.dirname(os.path.realpath(__file__)) def freeze_graph(model_folder): # We retrieve our checkpoint fullpath checkpoint = tf.train.get_checkpoint_state(model_folder) input_checkpoint = checkpoint.model_checkpoint_path # We precise the file fullname of our freezed graph absolute_model_folder = "/".join(input_checkpoint.split('/')[:-1]) output_graph = absolute_model_folder + "/frozen_model.pb" # Before exporting our graph, we need to precise what is our output node # this variables is plural, because you can have multiple output nodes #freeze以前必须明确哪一个是输出结点,也就是咱们要获得推论结果的结点 #输出结点能够看咱们模型的定义 #只有定义了输出结点,freeze才会把获得输出结点所必要的结点都保存下来,或者哪些结点能够丢弃 #因此,output_node_names必须根据不一样的网络进行修改 output_node_names = "Accuracy/predictions" # We clear the devices, to allow TensorFlow to control on the loading where it wants operations to be calculated clear_devices = True # We import the meta graph and retrive a Saver saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices) # We retrieve the protobuf graph definition graph = tf.get_default_graph() input_graph_def = graph.as_graph_def() #We start a session and restore the graph weights #这边已经将训练好的参数加载进来,也即最后保存的模型是有图,而且图里面已经有参数了,因此才叫作是frozen #至关于将参数已经固化在了图当中 with tf.Session() as sess: saver.restore(sess, input_checkpoint) # We use a built-in TF helper to export variables to constant output_graph_def = graph_util.convert_variables_to_constants( sess, input_graph_def, output_node_names.split(",") # We split on comma for convenience ) # Finally we serialize and dump the output graph to the filesystem with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString()) print("%d ops in the final graph." % len(output_graph_def.node)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--model_folder", type=str, help="Model folder to export") args = parser.parse_args() freeze_graph(args.model_folder)
说明:对于freeze操做,咱们须要定义输出结点的名字.由于网络实际上是比较复杂的,定义了输出结点的名字,那么freeze的时候就只把输出该结点所须要的子图都固化下来,其余无关的就舍弃掉.由于咱们freeze模型的目的是接下来作预测.因此,通常状况下,output_node_names就是咱们预测的目标.
3、加载freeze后的模型,注意该模型已是包含图和相应的参数了.因此,咱们不须要再加载参数进来.也即该模型加载进来已是可使用了.
#-*- coding:utf-8 -*- import argparse import tensorflow as tf def load_graph(frozen_graph_filename): # We parse the graph_def file with tf.gfile.GFile(frozen_graph_filename, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # We load the graph_def in the default graph with tf.Graph().as_default() as graph: tf.import_graph_def( graph_def, input_map=None, return_elements=None, name="prefix", op_dict=None, producer_op_list=None ) return graph if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--frozen_model_filename", default="results/frozen_model.pb", type=str, help="Frozen model file to import") args = parser.parse_args() #加载已经将参数固化后的图 graph = load_graph(args.frozen_model_filename) # We can list operations #op.values() gives you a list of tensors it produces #op.name gives you the name #输入,输出结点也是operation,因此,咱们能够获得operation的名字 for op in graph.get_operations(): print(op.name,op.values()) # prefix/Placeholder/inputs_placeholder # ... # prefix/Accuracy/predictions #操做有:prefix/Placeholder/inputs_placeholder #操做有:prefix/Accuracy/predictions #为了预测,咱们须要找到咱们须要feed的tensor,那么就须要该tensor的名字 #注意prefix/Placeholder/inputs_placeholder仅仅是操做的名字,prefix/Placeholder/inputs_placeholder:0才是tensor的名字 x = graph.get_tensor_by_name('prefix/Placeholder/inputs_placeholder:0') y = graph.get_tensor_by_name('prefix/Accuracy/predictions:0') with tf.Session(graph=graph) as sess: y_out = sess.run(y, feed_dict={ x: [[3, 5, 7, 4, 5, 1, 1, 1, 1, 1]] # < 45 }) print(y_out) # [[ 0.]] Yay! print ("finish")
说明:
一、在预测的过程当中,当把freeze后的模型加载进来后,咱们只须要定义好输入的tensor和目标tensor便可
二、在这里要注意一下tensor_name和ops_name,
注意prefix/Placeholder/inputs_placeholder仅仅是操做的名字,prefix/Placeholder/inputs_placeholder:0才是tensor的名字
x = graph.get_tensor_by_name('prefix/Placeholder/inputs_placeholder:0')必定要使用tensor的名字
三、要获取图中ops的名字和对应的tensor的名字,可用以下的代码
# We can list operations #op.values() gives you a list of tensors it produces #op.name gives you the name #输入,输出结点也是operation,因此,咱们能够获得operation的名字 for op in graph.get_operations(): print(op.name,op.values())
=============================================================================================================================
上面是使用了Saver()来保存模型,也可使用sv = tf.train.Supervisor()来保存模型
#-*- coding:utf-8 -*- import tensorflow as tf import numpy as np with tf.variable_scope('Placeholder'): inputs_placeholder = tf.placeholder(tf.float32, name='inputs_placeholder', shape=[None, 10]) labels_placeholder = tf.placeholder(tf.float32, name='labels_placeholder', shape=[None, 1]) with tf.variable_scope('NN'): W1 = tf.get_variable('W1', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1)) b1 = tf.get_variable('b1', shape=[1], initializer=tf.constant_initializer(0.1)) W2 = tf.get_variable('W2', shape=[10, 1], initializer=tf.random_normal_initializer(stddev=1e-1)) b2 = tf.get_variable('b2', shape=[1], initializer=tf.constant_initializer(0.1)) a = tf.nn.relu(tf.matmul(inputs_placeholder, W1) + b1) a2 = tf.nn.relu(tf.matmul(inputs_placeholder, W2) + b2) y = tf.div(tf.add(a, a2), 2) with tf.variable_scope('Loss'): loss = tf.reduce_sum(tf.square(y - labels_placeholder) / 2) with tf.variable_scope('Accuracy'): predictions = tf.greater(y, 0.5, name="predictions") correct_predictions = tf.equal(predictions, tf.cast(labels_placeholder, tf.bool), name="correct_predictions") accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32)) adam = tf.train.AdamOptimizer(learning_rate=1e-3) train_op = adam.minimize(loss) # generate_data inputs = np.random.choice(10, size=[10000, 10]) labels = (np.sum(inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32) print('inputs.shape:', inputs.shape) print('labels.shape:', labels.shape) test_inputs = np.random.choice(10, size=[100, 10]) test_labels = (np.sum(test_inputs, axis=1) > 45).reshape(-1, 1).astype(np.float32) print('test_inputs.shape:', test_inputs.shape) print('test_labels.shape:', test_labels.shape) batch_size = 32 epochs = 10 batches = [] print("%d items in batch of %d gives us %d full batches and %d batches of %d items" % ( len(inputs), batch_size, len(inputs) // batch_size, batch_size - len(inputs) // batch_size, len(inputs) - (len(inputs) // batch_size) * 32) ) for i in range(len(inputs) // batch_size): batch = [ inputs[batch_size*i:batch_size*i+batch_size], labels[batch_size*i:batch_size*i+batch_size] ] batches.append(list(batch)) if (i + 1) * batch_size < len(inputs): batch = [ inputs[batch_size*(i + 1):],labels[batch_size*(i + 1):] ] batches.append(list(batch)) print("Number of batches: %d" % len(batches)) print("Size of full batch: %d" % len(batches[0])) print("Size if final batch: %d" % len(batches[-1])) global_count = 0 #with tf.Session() as sess: sv = tf.train.Supervisor() with sv.managed_session() as sess: #sess.run(tf.initialize_all_variables()) for i in range(epochs): for batch in batches: # print(batch[0].shape, batch[1].shape) train_loss , _= sess.run([loss, train_op], feed_dict={ inputs_placeholder: batch[0], labels_placeholder: batch[1] }) # print('train_loss: %d' % train_loss) if global_count % 100 == 0: acc = sess.run(accuracy, feed_dict={ inputs_placeholder: test_inputs, labels_placeholder: test_labels }) print('accuracy: %f' % acc) global_count += 1 acc = sess.run(accuracy, feed_dict={ inputs_placeholder: test_inputs, labels_placeholder: test_labels }) print("final accuracy: %f" % acc) #在session当中就要将模型进行保存 #saver = tf.train.Saver() #last_chkp = saver.save(sess, 'results/graph.chkp') sv.saver.save(sess, 'results/graph.chkp') for op in tf.get_default_graph().get_operations(): print(op.name)
注意:使用了sv = tf.train.Supervisor(),就不须要再初始化了,将sess.run(tf.initialize_all_variables())注释掉,不然会报错.