题目:一个横纵向均递增的矩阵,指定元素是否在矩阵中?测试
看网上讨论很多,就是没个正经答案——没有测试过的代码没有完整的理论。spa
如今给出个人分析:假设矩阵是m*n的,给定元素为e。code
思路一:对矩阵每行(或每列)进行二分搜索,复杂度为 O(nlog2m)或O(mlog2n)。blog
思路二:将二分搜索推广到矩阵。参照下面矩阵,找到矩阵的中间数a32,比较a32和e会有以下状况:element
如此,可知每次迭代都将数据量减小为原来的3/4,如此复杂度为O(log4/3 (m*n)),约为O(log2 (m*n))class
a00 a01 a02 a03 a04搜索
a10 a11 a12 a13 a14数据
a20 a21 a22 a23 a24static
a30 a31 a32 a33 a34di
a40 a41 a42 a43 a44
a50 a51 a52 a53 a54
a60 a61 a62 a63 a64
具体代码以下,已通过测试,单元素、单行、单列等均经过测试。写得不很简洁,有意见尽管提。
1 public class IncreasingMatrixSearch { 2 3 public static boolean find(int[][] M, int x1, int y1, int x2, int y2, int e){ 4 if(x1 == x2 && y1 == y2) // only one element 5 return M[x1][y1] == e; 6 if(x2-x1 <= 1 && y2-y1 <= 1) // smallest cubic 7 return (M[x1][y1] == e || M[x2][y1] == e || M[x2][y2] == e || M[x1][y2] == e); 8 9 if(e < M[x1][y1] || e > M[x2][y2]) 10 return false; 11 12 int xm = (x1 + x2)/2; 13 int ym = (y1 + y2)/2; 14 15 boolean exist = false; 16 if(M[xm][ym] == e) 17 return true; 18 if(M[xm][ym] > e) 19 exist = find(M, x1, y1, xm, ym, e);// search up-left 20 else 21 exist = find(M, xm, ym, x2, y2, e);// search down-right 22 if(!exist){ 23 return (find(M, x1, ym+1, xm-1, y2, e) || find(M, xm+1, y1, x2, ym-1, e)); 24 } 25 26 return exist; 27 } 28 }