Python_科学计算平台__pypi体系的numpy、scipy、pandas、matplotlib库简介

1.numpy——基础,以矩阵为基础的数学计算模块,纯数学

存储和处理大型矩阵。 这个是很基础的扩展,其他的扩展都是以此为基础。 快速学习入口 https://docs.scipy.org/doc/numpy-dev/user/quickstart.htmlhtml

2.pandas——数据分析

基于NumPy 的一种工具,为了解决数据分析任务而建立的。 Pandas 归入了大量库和一些标准的数据模型,提供了高效地操做大型数据集所需的工具。 最具备统计意味的工具包,某些方面优于R软件。 数据结构有一维的Series,二维的DataFrame(相似于Excel或者SQL中的表,若是深刻学习,会发现Pandas和SQL类似的地方不少,例如merge函数), 三维的Panel (Pan(el) + da(ta) + s,知道名字的由来了吧)。 学习pandas要掌握: 汇总和计算描述统计,处理缺失数据 ,层次化索引 清理、转换、合并、重塑、GroupBy技术 日期和时间数据类型及工具(日期处理方便地飞起)。 http://pandas.pydata.org/pandas-docs/stable/10min.htmlpython

3.matplotlib——绘图,不推荐使用,不如用seaborn

python中最著名的绘图系统.不少其余的绘图例如seaborn(针对pandas绘图而来)也是由其封装而成。 这个绘图系统操做起来很复杂,和R的ggplot,lattice绘图相比显得望而却步,这也是为何我我的不丢弃R的缘由. 可是matplotlib的复杂给其带来了很强的定制性。其具备面向对象的方式及Pyplot的经典高层封装。 须要掌握的是: 散点图,折线图,条形图,直方图,饼状图,箱形图的绘制。 绘图的三大系统:pyplot,pylab(不推荐),面向对象 坐标轴的调整,添加文字注释,区域填充,及特殊图形patches的使用 金融的同窗注意的是:能够直接调用Yahoo财经数据绘图. http://matplotlib.org/users/pyplot_tutorial.html数据结构

4.scipy——数值计算库

在NumPy库的基础上增长了众多的数学、科学以及工程计算中经常使用的库函数。 方便、易于使用、专为科学和工程设计的Python工具包. 它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。函数

5.Python numpy,scipy,pandas这些库的区别

Numpy是以矩阵为基础的数学计算模块,纯数学。 Scipy基于Numpy,科学计算库,有一些高阶抽象和物理模型。比方说作个傅立叶变换,这是纯数学的,用Numpy;作个滤波器,这属于信号处理模型了,在Scipy里找。 Pandas提供了一套名为DataFrame的数据结构,比较契合统计分析中的表结构,而且提供了计算接口,可用Numpy或其它方式进行计算。工具

相关文章
相关标签/搜索