JavaShuo
栏目
标签
Reinforcement Learning for Relation Classification from Noisy Data
时间 2020-12-27
标签
关系分类
繁體版
原文
原文链接
主要贡献 提出一个新的关系分类模型,它有实体选择器与关系分类器构成。它能够在句子级别提取关系。 将实体选择问题转换成强化学习问题,这使得不需要实体选择的标签,而只需要关系分类器的弱监督的回馈就能进行实体选择。 摘要 现在的关系分类方法都是依赖拍距离监督假设(distance supervision assume)的,它假设一系列提到一对实体的句子,都是在描述这对实体的一种关系。类似于这种思想的方法
>>阅读原文<<
相关文章
1.
Reinforcement Learning for Relation Classification from Noisy Data阅读笔记
2.
Learning from Uncertainty for Big Data
3.
Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification (2019 AAAI)
4.
论文笔记:Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification
5.
Learning from Noisy Anchors的思考
6.
Noise2Void - Learning Denoising from Single Noisy Images
7.
Open Relation Extraction- Relational Knowledge Transfer from Supervised Data to Unsupervised Data
8.
(转) Deep Reinforcement Learning: Pong from Pixels
9.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
10.
《Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning》
更多相关文章...
•
Swift for 循环
-
Swift 教程
•
Scala for循环
-
Scala教程
•
Java Agent入门实战(三)-JVM Attach原理与使用
•
JDK13 GA发布:5大特性解读
相关标签/搜索
noisy
relation
classification
reinforcement
learning
data
DATA+++
Deep Learning
Meta-learning
Learning Perl
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
ubantu 增加搜狗输入法
2.
用实例讲DynamicResource与StaticResource的区别
3.
firewall防火墙
4.
页面开发之res://ieframe.dll/http_404.htm#问题处理
5.
[实践通才]-Unity性能优化之Drawcalls入门
6.
中文文本错误纠正
7.
小A大B聊MFC:神奇的静态文本控件--初识DC
8.
手扎20190521——bolg示例
9.
mud怎么存东西到包_将MUD升级到Unity 5
10.
GMTC分享——当插件化遇到 Android P
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Reinforcement Learning for Relation Classification from Noisy Data阅读笔记
2.
Learning from Uncertainty for Big Data
3.
Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification (2019 AAAI)
4.
论文笔记:Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification
5.
Learning from Noisy Anchors的思考
6.
Noise2Void - Learning Denoising from Single Noisy Images
7.
Open Relation Extraction- Relational Knowledge Transfer from Supervised Data to Unsupervised Data
8.
(转) Deep Reinforcement Learning: Pong from Pixels
9.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
10.
《Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning》
>>更多相关文章<<