【数据结构】二叉树

1、顺序存储:采用数组来记录二叉树的全部节点。java

public class ArrayBinTree<T> {
    private final int DEFAULT_SIZE = 8;
    // 数组记录该树的全部节点
    private Object[] datas;
    // 保存该树的深度
    private int deep;
    private int arraySize;

    // 以默认深度来建立二叉树
    public ArrayBinTree() {
        this.deep = DEFAULT_SIZE;
        this.arraySize = (int)Math.pow(2, deep) - 1;
        this.datas = new Object[arraySize];
    }
    // 以指定深度来建立二叉树
    public ArrayBinTree(int deep) {
        this.deep = deep;
        this.arraySize = (int)Math.pow(2, deep) - 1;
        this.datas = new Object[arraySize];
    }
    // 以指定深度、根节点建立二叉树
    public ArrayBinTree(int deep, T data) {
        this.deep = deep;
        this.arraySize = (int)Math.pow(2, deep) - 1;
        this.datas = new Object[arraySize];
        datas[0] = data;
    }
    /**
     * 为指定节点添加子节点
     * @param index 须要添加子节点的父节点索引
     * @param data 新子节点的数据
     * @param left 是否为左节点
     */
    public void addNode(int index, T data, boolean left) {
        if (datas[index] == null) {
            throw new RuntimeException(index + "节点为空,不能添加子节点");
        }
        if (2 * index + 1 >= arraySize) {
            throw new RuntimeException("树底层的数组已满,树越界异常");
        }
        if (left) {
            datas[2 * index + 1] = data;
        } else {
            datas[2 * index + 2] = data;
        }
    }
    // 判断二叉树是否为空
    public boolean empty() {
        // 根据根元素来判断二叉树是否为空
        return datas[0] == null;
    }
    // 返回根节点
    public T root() {
        if (empty()) {
            throw new RuntimeException("树为空,没法返回根节点");
        }
        return (T)datas[0];
    }
    // 返回指定节点(非根节点)的父节点
    public T parent(int index) {
        if (index == 0) {
            throw new RuntimeException("根节点没有父节点");
        }
        return (T)datas[(index - 1) / 2];
    }
    // 返回指定节点(非叶子)的左子节点,当左子节点不存在时返回null
    public T left(int index) {
        if (2 * index + 1 >= arraySize) {
            throw new RuntimeException(index + "节点为叶子节点,没有左子节点");
        }
        return datas[index * 2 + 1] == null? null : (T)datas[index * 2 + 1];
    }
    // 返回该二叉树的深度
    public int deep(int index) {
        return deep;
    }
    // 返回指定节点的位置
    public int pos(T data) {
        // 该循环实际上就是按广度遍从来搜索每一个节点
        for (int i = 0; i < arraySize; i++) {
            if (datas[i] == data) {
                return i;
            }
        }
        return -1;
    }
    public String toString() {
        return java.util.Arrays.toString(datas);
    }
}

2、二叉链表存储:每一个节点保留一个left、rigth域,分别指向其左、右子节点。node

public class TwoLinkBinTree<E> {

   public static class TreeNode {
      private Object data;
      private TreeNode left;
      private TreeNode right;
      public TreeNode() {
      }
      public TreeNode(Object data) {
         this.data = data;
      }
      public TreeNode(Object data, TreeNode left, TreeNode right) {
         this.data = data;
         this.left = left;
         this.right = right;
      }
   }
   private TreeNode root;
   // 以默认构造器来建立二叉树
   public TwoLinkBinTree() {
      this.root = new TreeNode();
   }
   // 以指定根元素来建立二叉树
   public TwoLinkBinTree(E data) {
      this.root = new TreeNode(data);
   }
    /**
     * 为指定节点添加子节点
     * @param parent 须要添加子节点的父节点的索引
     * @param data 新子节点的数据
     * @param left 是否为左节点
     * @return 新增的节点
     */
   public TreeNode addNode(TreeNode parent, E data, boolean left) {
      if (parent == null) {
         throw new RuntimeException(parent + "节点为空,没法添加子节点");
      }
      if (left && parent.left != null) {
         throw new RuntimeException(parent + "节点已有左节点,没法添加左节点");
      }
      if (!left && parent.right != null) {
         throw new RuntimeException(parent + "节点已有右节点,没法添加右节点");
      }
      TreeNode newNode = new TreeNode(data);
      if (left) {
         parent.left = newNode;
      } else {
         parent.right = newNode;
      }
      return newNode;
   }
   // 判断二叉树是否为空
   public boolean empty() {
       // 根据根元素来判断二叉树是否为空
      return root.data == null;
   }
   // 返回根节点
   public TreeNode root() {
      if (empty()) {
         throw new RuntimeException("树为空,没法返回根节点");
      }
      return root;
   }
   // 返回指定节点(非根节点)的父节点
   public E parent(TreeNode node) {
       // 对于二叉链表存储法,若是要访问指定节点的父节点必须遍历二叉树
      return null;
   }
   // 返回指定节点(非叶子)的左子节点,当左子节点不存在时返回null
   public E leftChild(TreeNode parent) {
      if (parent == null) {
         throw new RuntimeException(parent + "节点为空,无左子节点");
      }
      return parent.left == null ? null : (E)parent.left.data;
   }
   // 返回指定节点(非叶子)的右子节点。当右子节点不存在时返回null
   public E rightChild(TreeNode parent) {
      if (parent == null) {
         throw new RuntimeException(parent + "节点为空,无右子节点");
      }
      return parent.right == null ? null : (E)parent.right.data;
   }
   // 二叉树的深度
   public int deep() {
       // 获取该树的深度
      deep(root);
   }
   // 递归方法:每颗子树的深度为其全部子树的最大深度 + 1
   private int deep(TreeNode node) {
        if (node == null) {
            return 0;
        }
        if (node.right == null && node.left == null) {
            return 1;
        } else {
            int leftDeep = deep(node.left);
            int rightDeep = deep(node.right);
            int max = leftDeep > rightDeep? leftDeep : rightDeep;
            return max + 1;
        }
   }
}

3、三叉链表存储:每一个节点保留一个left、right、parent域,分别指向其左、右子节点和父节点。数组

public class ThreeLinkBinTree<E> {

    public static class TreeNode {
        private Object data;
        private TreeNode parent;
        private TreeNode left;
        private TreeNode right;
        public TreeNode() {

        }
        public TreeNode(Object data) {
            this.data = data;
        }
        public TreeNode(Object data, TreeNode parent, TreeNode left, TreeNode right) {
            this.data = data;
            this.parent = parent;
            this.left = left;
            this.right = right;
        }
    }
    private TreeNode root;
    // 以默认构造器来建立二叉树
    public ThreeLinkBinTree() {
        root = new TreeNode();
    }
    // 以指定根元素来建立二叉树
    public ThreeLinkBinTree(E data) {
        root = new TreeNode(data);
    }
    /**
     *  为指定节点添加子节点
     * @param parent 须要添加子节点的父节点的索引
     * @param data 新子节点的数据
     * @param left 是否为左节点
     * @return 新增的节点
     */
    public TreeNode addNode(TreeNode parent, E data, boolean left) {
        if (parent == null) {
            throw new RuntimeException(parent + "节点为空,没法添加子节点");
        }
        if (left && parent.left != null) {
            throw new RuntimeException(parent + "节点左节点不为空,没法添加左子节点");
        }
        if (!left && parent.right != null) {
            throw new RuntimeException(parent + "节点右节点不为空,没法添加右子节点");
        }
        TreeNode newNode = new TreeNode(data);
        if (left) {
            parent.left = newNode;
        } else {
            parent.right = newNode;
        }
        newNode.parent = parent;
        return newNode;
    }
    // 判断二叉树是否为空
    public boolean empty() {
        // 根据根元素来判断二叉树是否为空
        return root.data == null;
    }
    // 返回根节点
    public TreeNode root() {
        if (empty()) {
            throw new RuntimeException("根节点为空");
        }
        return root;
    }
    // 返回指定节点(非根节点)的父节点
    public E parent(TreeNode node) {
        return (E)node.parent.data;
    }
    // 返回指定节点(非叶子)的左子节点。当左子节点不存在时返回null
    public E leftChild(TreeNode parent) {
        if (parent == null) {
            throw new RuntimeException(parent + "节点为空,无左子节点");
        }
        return parent.left == null ? null:(E)parent.left.data;
    }
    // 返回指定节点(非叶子)的右子节点。当右子节点不存在时返回null
    public E rightChild(TreeNode parent) {
        if (parent == null) {
            throw new RuntimeException(parent + "节点为空,无左子节点");
        }
        return parent.right == null ? null : (E)parent.right.data;
    }
    // 返回该二叉树的深度
    public int deep() {
        // 获取该树的深度
        deep(root);
    }
    // 递归方法:每颗子树的深度为其全部子树的最大深度 + 1
    private int deep(TreeNode node) {
        if (node == null) {
            return 0;
        }
        if (node.left == null && node.right == null) {
            return 1;
        } else {
            int leftDeep = deep(node.left);
            int rightDeep = deep(node.right);
            int max = leftDeep > rightDeep? leftDeep : rightDeep;
            return max + 1;
        }
    }
}
public class BinTreeTest {
    public static void main(String[] args) {
        ArrayBinTree<String> binTree = new ArrayBinTree<String>(4, "根");
        binTree.addNode(0, "第二层右子节点", false);
        binTree.addNode(2, "第三层右子节点", false);
        binTree.addNode(6, "第四层右子节点", false);
        System.out.println("【顺序存储】二叉树:" + binTree.toString());
        TwoLinkBinTree<String> binTree2 = new TwoLinkBinTree<String>("根节点");
        TwoLinkBinTree.TreeNode tn1 = binTree2.addNode(binTree2.root(), "第二层左节点", true);
        TwoLinkBinTree.TreeNode tn2 = binTree2.addNode(binTree2.root(), "第二层右节点", false);
        TwoLinkBinTree.TreeNode tn3 = binTree2.addNode(tn2, "第三层左节点", true);
        TwoLinkBinTree.TreeNode tn4 = binTree2.addNode(tn2, "第三层右节点", false);
        TwoLinkBinTree.TreeNode tn5 = binTree2.addNode(tn3, "第四层左节点", true);
        System.out.println("tn2的左子节点:" + binTree2.leftChild(tn2));
        System.out.println("tn2的右子节点:" + binTree2.rightChild(tn2));
        System.out.println("【二叉链表存储】树深度:" + binTree2.deep());
        ThreeLinkBinTree<String> binTree3 = new ThreeLinkBinTree<String>("根节点");
        ThreeLinkBinTree.TreeNode ttn1 = binTree3.addNode(binTree3.root(), "第二层左节点", true);
        ThreeLinkBinTree.TreeNode ttn2 = binTree3.addNode(binTree3.root(), "第二层右节点", false);
        ThreeLinkBinTree.TreeNode ttn3 = binTree3.addNode(ttn2, "第三层左节点", true);
        ThreeLinkBinTree.TreeNode ttn4 = binTree3.addNode(ttn2, "第三层右节点", false);
        ThreeLinkBinTree.TreeNode ttn5 = binTree3.addNode(ttn3, "第四层左节点", true);
        System.out.println("tn2的左子节点:" + binTree3.leftChild(ttn2));
        System.out.println("tn2的右子节点:" + binTree3.rightChild(ttn2));
        System.out.println("tn2的父子节点:" + binTree3.parent(ttn2));
        System.out.println("【三叉链表存储】树深度:" + binTree3.deep());
    }
}
相关文章
相关标签/搜索