函数装饰器用于在源码中“标记”函数, 以某种方式加强函数的行为,这是一个强大的功能。python
函数装饰器是一个可调用对象,其参数是另一个函数,即被装饰函数。装饰器可能处理被装饰函数,而后将其返回,或者将其替换成另外一个函数或可调用对象。数组
函数装饰器的一个重要特性就是,它们在被装饰的函数定义以后当即运行。缓存
registry = [] def register(func): print('running register(%s)' % func) registry.append(func) return func @register def f1(): print('running f1()') @register def f2(): print('running f2()') def f3(): print('running f3()') def main(): print('running main()') print('registry ->', registry) f1() f2() f3() if __name__ == '__main__': main()
运行结果:闭包
running register(<function f1 at 0x0000022DC2D23620>) running register(<function f2 at 0x0000022DC2D236A8>) running main() registry -> [<function f1 at 0x0000022DC2D23620>, <function f2 at 0x0000022DC2D236A8>] running f1() running f2() running f3()
能够看到,被装饰的 f1() 和 f2() 首先被运行,随后才运行main()中的语句。app
被装饰函数运行时,其自己的内容(示例中print语句)并无被执行,而是运行了装饰器函数中的print语句;这就是装饰器的做用,替代被装饰函数,同时装饰器也能够调用外界自由变量(registry),从而引出一个重要概念:函数
实例中registry变量和register函数组合的共同体,被成称为闭包。code
该例中有两个不太寻常的地方:orm
# clockdeco.py 输出被装饰函数的运行时间 import time def clock(func): def clocked(*args): t0 = time.perf_counter() result = func(*args) elapsed = time.perf_counter() - t0 name = func.__name__ arg_str = ','.join(repr(arg) for arg in args) print('[%0.8fs] %s(%s) -> %r' % (elapsed, name, arg_str, result)) return result return clocked
简单运用:对象
# clockdeco_demo.py import time from clockdeco import clock @clock def snooze(seconds): time.sleep(seconds) @clock def factorial(n): return 1 if n < 2 else n*factorial(n-1) def main(): print('*' * 40, 'Calling snooze(.123)') snooze(.123) print('*' * 40, 'Calling factorial(6)') print('6! =', factorial(6)) if __name__ == '__main__': main()
运行结果:ci
**************************************** Calling snooze(.123) [0.12240868s] snooze(0.123) -> None **************************************** Calling factorial(6) [0.00000068s] factorial(1) -> 1 [0.00020317s] factorial(2) -> 2 [0.00039755s] factorial(3) -> 6 [0.00053638s] factorial(4) -> 24 [0.00062375s] factorial(5) -> 120 [0.00067319s] factorial(6) -> 720 6! = 720
运行过程当中,首先输出装饰器函数中的内容:
而后获得最终的计算结果。可见,装饰器函数的优先级较高
固然,该实例中的装饰器具备几个缺点:
下面的例子对其作出改进:
# clockdeco2.py import time import functools def clock(func): @functools.wraps(func) def clocked(*args, **kwargs): t0 = time.time() result = func(*args, **kwargs) elapsed = time.time() - t0 name = func.__name__ arg_lst = [] if args: arg_lst.append(','.join(repr(arg) for arg in args)) if kwargs: pairs = ['%s=%r' % (k, w) for k, w in sorted(kwargs.items())] arg_lst.append(', '.join(pairs)) arg_str = ', '.join(arg_lst) print('[%0.8fs] %s(%s) -> %r ' % (elapsed, name, arg_str, result)) return result return clocked
运用:
# clockdeco_demo.py import time from clockdeco2 import clock @clock def snooze(seconds): time.sleep(seconds) @clock def factorial(n): return 1 if n < 2 else n*factorial(n-1) def main(): print('*' * 40, 'Calling snooze(.123)') snooze(.123) print('*' * 40, 'Calling factorial(6)') print('6! =', factorial(6)) if __name__ == '__main__': main()
运行结果:
**************************************** Calling snooze(.123) [0.12328553s] snooze(0.123) -> None **************************************** Calling factorial(6) [0.00000000s] factorial(1) -> 1 [0.00000000s] factorial(2) -> 2 [0.00000000s] factorial(3) -> 6 [0.00099683s] factorial(4) -> 24 [0.00099683s] factorial(5) -> 120 [0.00099683s] factorial(6) -> 720 6! = 720
改进后的clockdeco2.py中,使用functools.wraps装饰器把相关属性从func复制到clocked中,此外,这个新版本还能正确处理关键字参数。functools.wraps是标准库中的装饰器,它能够用于装饰一个函数,可是对于被装饰函数自己的功能没有任何影响,它的功能只是传递函数内置参数。
# clockdeco_param.py import time DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}' def clock(fmt=DEFAULT_FMT): def decorate(func): def clocked(*_args): t0 = time.time() _result = func(*_args) elapsed = time.time() - t0 name = func.__name__ args = ','.join(repr(arg) for arg in _args) result = repr(_result) print(fmt.format(**locals())) return _result return clocked return decorate
示例1:
# clockdeco_param_demo.py import time from clockdeco_param import clock @clock() def snooze(seconds): time.sleep(seconds) for i in range(3): snooze(.123)
运行结果:
[0.12367034s] snooze(0.123) -> None [0.12367010s] snooze(0.123) -> None [0.12366986s] snooze(0.123) -> None
示例2:
# clockdeco_param_demo.py import time from clockdeco_param import clock @clock('{name}:{elapsed}s') def snooze(seconds): time.sleep(seconds) for i in range(3): snooze(.123)
运行结果:
snooze:0.12366843223571777s snooze:0.12369871139526367s snooze:0.12366509437561035s
示例3:
# clockdeco_param_demo.py import time from clockdeco_param import clock @clock('{name}({args}) dt={elapsed:0.3f}s') def snooze(seconds): time.sleep(seconds) for i in range(3): snooze(.123)
运行结果:
snooze(0.123) dt=0.124s snooze(0.123) dt=0.124s snooze(0.123) dt=0.124s
分析三个示例能够看出,当装饰器clock的参数不一样时,被装饰函数运行所得结果也会不一样。
python中参数化装饰器的用意在于将更多的参数传送给装饰器,由于装饰器的第一个参数必定是被装饰函数。
functools.lru_cache和functools.wraps同样,也是一个python内置装饰器,它的功能是将耗时的函数结果保存起来,避免传图相同的参数形成重复计算,从而节省代码运行时间。
下面以斐波那契数列写一个案例:
使用functools.lru_cache
import functools
from clockdeco import clock
@functools.lru_cache()
@clock
def fibonacci(n):
if n < 2: return n return fibonacci(n-2) + fibonacci(n-1)
if __name__=='__main__':
print(fibonacci(30))
运行结果:
[0.00000000s] fibonacci(0) -> 0 [0.00000068s] fibonacci(1) -> 1 ...... [0.00000271s] fibonacci(29) -> 514229 [0.00542815s] fibonacci(30) -> 832040 832040
屡次运行,计算fibonacci(30)大概耗时0.005秒左右
做为对比:
import functools from clockdeco import clock @clock def fibonacci(n): if n < 2: return n return fibonacci(n-2) + fibonacci(n-1) if __name__=='__main__': print(fibonacci(30))
运行结果:
....... [156.42139917s] fibonacci(28) -> 317811 [230.80184171s] fibonacci(29) -> 514229 [368.52227404s] fibonacci(30) -> 832040 832040
嗯……陷入沉思,虽然笔记本渣渣配置,可是运行了6分钟,差距太大