【原+转】用CMake代替makefile进行跨平台交叉编译

  在开始介绍如何使用CMake编译跨平台的静态库以前,先讲讲我在没有使用CMake以前所趟过的坑。由于不少开源的程序,好比png,都是自带编译脚本的。咱们可使用下列脚原本进行编译:
html

./configure  --prefix=/xxx/xx --enable-static=YES
make
make install

  相信手动在类Unix系统上面编译过开源程序的同窗对上面的命令确定很是熟悉。更悲惨的是,有些开源库是不提供configure配置文件的,只有一个Makefile或者Makefile.gcc。个人体会是,Makefile是一个很复杂的东西,没有必定的积累咱们是看不懂的,更别说去修改它了。而本文的CMake能够更傻瓜更简单地达到咱们的目的,你不须要理会复杂的makefile语法。Just follow me!linux

   若是不配置编译器和一些编译、连接参数,这样的操做,最后编译出来的静态库只能在本系统上面被连接使用。好比你在mac上面运行上面的命令,编译出来的静态库就只能给mac程序连接使用。若是在Linux上面运行上述命令,则也只能给Linux上面的程序所连接使用。若是咱们想要在Mac上面编译出ios和android的静态库,就必需要用到交叉编译。android

  要进行交叉编译,通常来讲要指定目标编译平台的编译器,一般是指定一个CC环境变量,根据编译的是c库仍是c++库,要分别指定C_flags和CXX_flag,固然还须要指定c/c++和系统sdk的头文件包含路径。总之,很是之繁琐。ios

 


 

为何要使用CMake

  为何咱们不使用autoconf?为何咱们不使用QMake,JAM,ANT呢?具体缘由你们能够参考我在本文最后的参考连接里面的《Mastering CMake》一书的第一章。我本身使用CMake的感觉就是:我原来编写bash,配置configure参数,读各个开源库的INSTALL文件(由于不一样库的configure参数有差异),配置各类编译flag,头文件包含等。最后3天时间,折腾了png和jepg两个库的编译。固然,中间我还写了android和linux的编译脚本。而换用CMake之后,我2天时间编译完了Box2D,spine和Chipmunk的编译。而且配置脚本至关简单,添加新的库,基本上只是拷贝脚本,修改一两个参数便可。有了CMake,编译跨平台静态库和生成跨平台可执行程序So Easy!c++

  


 编写CMakeLists.txt

  编写一个静态库的CMake配置文件过程以下:(这里我以Box2D为例)git

一、指定头文件和源文件

include_directories(
  ${CMAKE_CURRENT_SOURCE_DIR}
)

file(GLOB_RECURSE box2d_source_files "${CMAKE_CURRENT_SOURCE_DIR}/Box2D/*.cpp")

  个人CMakeLists.txt和Box2D的文件结构关系以下图所示:github

  这里的${CMAKE_CURRENT_SOURCE_DIR}表示CMakeLists.txt所在的目录。而GLOB_RECURSE能够递归地去搜索Box2D目录下面全部的.cpp文件来参与静态库的编译。而include_directories和file指令,显而易见,它们是用来指定静态库的头文件和实现文件。编程

  注:指定头文件的原则是:能够多引入,但不能缺。交叉编译本质也是编译,所以基本的要求是语法没问题,若是必要的头文件缺乏了天然编译会失败!因此,原则上能够把整个根目录的头文件都引入进去,不过这样虽然省事,可是会致使生成的库文件体积过大,可是会更保险一些,好比:windows

 

include_directories(
  "../../../myWindows"
  "../../../"#很残暴地引入了整个根目录
  "../../../include_windows"
)

 

  

二、添加环境变量(可选, added by 编程小翁, 博客园)

add_definitions( -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -D_REENTRANT -DENV_UNIX -DBREAK_HANDLER -DUNICODE -D_UNICODE)

若是须要判断平台,能够这么写:xcode

IF(APPLE)
  add_definitions(-DENV_MACOSX)
  FIND_LIBRARY(COREFOUNDATION_LIBRARY CoreFoundation )
ENDIF(APPLE)

其中-D_FILE_OFFSET_BITS=64表示定义一个环境变量_FILE_OFFSET_BITS且值为64。添加环境变量用在何时呢?咱们经常能够在一些开源的项目工程代码中看到这样的形式:

#ifdef _UNICODE
  AString name = nameWindowToUnix2(fileName);
#else
  const char * name = nameWindowToUnix(fileName);
#endif

以上代码中_UNICODE就是环境变量,那像这种变量该经过何时定义呢?一种是像上面同样经过add_definitions写咱们的编译脚本CMakeLists.txt,另外一种是新建一个.h文件,写在里面而后引用。两种方式彻底等效,我在个人交叉编译工程中实践过。例如,上面的add_definitions能够转化为:

#define FILE_OFFSET_BITS    64
#define _LARGEFILE_SOURCE    1
#define _REENTRANT           1
#define ENV_UNIX            1
#define BREAK_HANDLER       1
#define UNICODE             1
#define _UNICODE            1

 

三、设置库的名字跟类型

add_library(Box2D STATIC ${box2d_source_files})

  这里add_library表示最终编译为一个库,static表示是静态库,若是想编译动态库,能够修改成shared. 至此,一个静态库的配置就完成了。固然,由于这个库没有包括其它外部的头文件,因此会比较简单。但这也远比本身写一个Makefile要简单N倍,请记住这句话

 

  以上就是编写一个CMakeLists.txt配置文件的所有必要过程,一些更复杂的配置文件可能会增长一些其余东西,不过以上部分是基本逃不掉的。只要包含以上步骤就能成功交叉编译出目标平台的库文件。下面是一个完整的CMakeLists.txt文件示例(文件名不能改)

 1 cmake_minimum_required(VERSION 3.2)
 2 
 3 #1、添加头文件目录,能够多引用,可是不能缺,由于缺了就编译不过
 4 include_directories(
 5   "../../../myWindows"
 6   "../../../"
 7   "../../../include_windows"
 8 )
 9 
10 #2、添加环境变量,请结合实际项目要求,不是必须的
11 add_definitions( -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -D_REENTRANT -DENV_UNIX -DBREAK_HANDLER -DUNICODE -D_UNICODE)
12 
13 IF(APPLE)
14   add_definitions(-DENV_MACOSX)
15   FIND_LIBRARY(COREFOUNDATION_LIBRARY CoreFoundation )
16 ENDIF(APPLE)
17 
18 #3、源文件
19 file(GLOB_RECURSE src_files
20   "../../../../C/7zCrc.c"
21   "../../../../C/7zCrcOpt.c"
22   "../../../../C/7zStream.c"
23   "../../../../C/Aes.c"
24   "../../../../C/Alloc.c"
25   "../../../../C/Bra.c"
26   "../../../../C/Bra86.c"
27 )
28 
29 #4、设置生成静态库以及名称
30 add_library(myLibName STATIC ${src_files})
31 
32 IF(APPLE)
33    TARGET_LINK_LIBRARIES(myLibName ${COREFOUNDATION_LIBRARY} ${CMAKE_THREAD_LIBS_INIT})
34 ELSE(APPLE)
35 
36 IF(HAVE_PTHREADS)
37    TARGET_LINK_LIBRARIES(myLibName ${CMAKE_THREAD_LIBS_INIT})
38   ENDIF(HAVE_PTHREADS)
39 ENDIF(APPLE)
CMakeLists.txt完整示例

 


 

 

编译iOS静态库

  咱们有了配置完毕的CMakeLists.txt文件,但不要觉得这样就万事大吉了!不知道你发现了没,上述内容并不涉及目标平台的相关信息,所以编译出来的库只能在运行该配置文件的当前系统上使用。如今须要配合接下来的操做才能最终达到目的。

  编译iOS库,通常要先使用cmake指令生成xcode工程,再用xcode工程运行编译出静态库(也就是工程的product是静态库,而不是**.app)。插播一段MAC系统下cmake安装与使用方法介绍:

MAC默认是没有cmake指令的。要测试你的MAC是否已经装过cmake,能够这样作:打开Terminal,输入cmake --version,若是已经安装,则会显示具体的版本号;不然就是没安装或者没配置成功。

1、从这里http://mac.softpedia.com/get/Development/Compilers/CMake.shtml下载cmake.app,而后安装到默认位置;

2、将cmake.app与terminal相连接。打开terminal,输入如下命令:export PATH=/Applications/CMake.app/Contents/bin:$PATH

3、配置成功。此次再输入cmake就有效了。不过,以上连接只对本terminal窗口有效,一旦关闭或者其余新建的terminal一样要再作一遍!

  回到iOS交叉编译上来,使用cmake命令生成xcode工程能够这么作:

cmake -GXcode .

  经过该命令能够生成一个project.xcodeproject工程。可是,上述命令并不包含任何关于iOS的信息,所以该xcode工程只能用于MAC库的编译。不过咱们能够借助ios-cmake开源项目。 下载iOS_64.cmake这个toolchain文件,而后使用下列命令来生成ios工程:

cmake -DCMAKE_TOOLCHAIN_FILE=iOS_64.cmake  -DCMAKE_IOS_DEVELOPER_ROOT=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/ -DCMAKE_IOS_SDK_ROOT=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk/  -GXcode .

  这个过程很容易出错,出错了不要慌,根据terminal的提示大胆地更改iOS_64.cmake(记得提早备份)。我也是一步步调试过来的,如下的iOS_64.cmake是我本身更改后的,SDK是iOS8.3,Xcode6.3,若是环境跟我同样的话理论上说能够直接使用个人.cmake:

# This file is based off of the Platform/Darwin.cmake and Platform/UnixPaths.cmake
# files which are included with CMake 2.8.4
# It has been altered for iOS development

# Options:
#
# IOS_PLATFORM = OS (default) or SIMULATOR
#   This decides if SDKS will be selected from the iPhoneOS.platform or iPhoneSimulator.platform folders
#   OS - the default, used to build for iPhone and iPad physical devices, which have an arm arch.
#   SIMULATOR - used to build for the Simulator platforms, which have an x86 arch.
#
# CMAKE_IOS_DEVELOPER_ROOT = automatic(default) or /path/to/platform/Developer folder
#   By default this location is automatcially chosen based on the IOS_PLATFORM value above.
#   If set manually, it will override the default location and force the user of a particular Developer Platform
#
# CMAKE_IOS_SDK_ROOT = automatic(default) or /path/to/platform/Developer/SDKs/SDK folder
#   By default this location is automatcially chosen based on the CMAKE_IOS_DEVELOPER_ROOT value.
#   In this case it will always be the most up-to-date SDK found in the CMAKE_IOS_DEVELOPER_ROOT path.
#   If set manually, this will force the use of a specific SDK version

# Standard settings
set (CMAKE_SYSTEM_NAME Darwin)
set (CMAKE_SYSTEM_VERSION 1 )
set (UNIX True)
set (APPLE True)
set (IOS True)

# Force the compilers to gcc for iOS
include (CMakeForceCompiler)
#CMAKE_FORCE_C_COMPILER (gcc gcc)
#CMAKE_FORCE_CXX_COMPILER (g++ g++)
CMAKE_FORCE_C_COMPILER ("/usr/bin/gcc" gcc)
CMAKE_FORCE_CXX_COMPILER ("/usr/bin/g++" g++)

# Skip the platform compiler checks for cross compiling
set (CMAKE_CXX_COMPILER_WORKS TRUE)
set (CMAKE_C_COMPILER_WORKS TRUE)

# All iOS/Darwin specific settings - some may be redundant
set (CMAKE_SHARED_LIBRARY_PREFIX "lib")
set (CMAKE_SHARED_LIBRARY_SUFFIX ".dylib")
set (CMAKE_SHARED_MODULE_PREFIX "lib")
set (CMAKE_SHARED_MODULE_SUFFIX ".so")
set (CMAKE_MODULE_EXISTS 1)
set (CMAKE_DL_LIBS "")

set (CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG "-compatibility_version ")
set (CMAKE_C_OSX_CURRENT_VERSION_FLAG "-current_version ")
set (CMAKE_CXX_OSX_COMPATIBILITY_VERSION_FLAG "${CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG}")
set (CMAKE_CXX_OSX_CURRENT_VERSION_FLAG "${CMAKE_C_OSX_CURRENT_VERSION_FLAG}")

# Hidden visibilty is required for cxx on iOS 
set (CMAKE_C_FLAGS "")
set (CMAKE_CXX_FLAGS "-headerpad_max_install_names -fvisibility=hidden -fvisibility-inlines-hidden")

set (CMAKE_C_LINK_FLAGS "-Wl,-search_paths_first ${CMAKE_C_LINK_FLAGS}")
set (CMAKE_CXX_LINK_FLAGS "-Wl,-search_paths_first ${CMAKE_CXX_LINK_FLAGS}")

set (CMAKE_PLATFORM_HAS_INSTALLNAME 1)
set (CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib -headerpad_max_install_names")
set (CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle -headerpad_max_install_names")
set (CMAKE_SHARED_MODULE_LOADER_C_FLAG "-Wl,-bundle_loader,")
set (CMAKE_SHARED_MODULE_LOADER_CXX_FLAG "-Wl,-bundle_loader,")
set (CMAKE_FIND_LIBRARY_SUFFIXES ".dylib" ".so" ".a")

# hack: if a new cmake (which uses CMAKE_INSTALL_NAME_TOOL) runs on an old build tree
# (where install_name_tool was hardcoded) and where CMAKE_INSTALL_NAME_TOOL isn't in the cache
# and still cmake didn't fail in CMakeFindBinUtils.cmake (because it isn't rerun)
# hardcode CMAKE_INSTALL_NAME_TOOL here to install_name_tool, so it behaves as it did before, Alex
if (NOT DEFINED CMAKE_INSTALL_NAME_TOOL)
    find_program(CMAKE_INSTALL_NAME_TOOL install_name_tool)
endif (NOT DEFINED CMAKE_INSTALL_NAME_TOOL)

# Setup iOS platform
if (NOT DEFINED IOS_PLATFORM)
    set (IOS_PLATFORM "OS")
endif (NOT DEFINED IOS_PLATFORM)
set (IOS_PLATFORM ${IOS_PLATFORM} CACHE STRING "Type of iOS Platform")

# Check the platform selection and setup for developer root
if (${IOS_PLATFORM} STREQUAL "OS")
    set (IOS_PLATFORM_LOCATION "iPhoneOS.platform")
elseif (${IOS_PLATFORM} STREQUAL "SIMULATOR")
    set (IOS_PLATFORM_LOCATION "iPhoneSimulator.platform")
else (${IOS_PLATFORM} STREQUAL "OS")
    message (FATAL_ERROR "Unsupported IOS_PLATFORM value selected. Please choose OS or SIMULATOR")
endif (${IOS_PLATFORM} STREQUAL "OS")

# Setup iOS developer location
if (NOT DEFINED CMAKE_IOS_DEVELOPER_ROOT)
    set (CMAKE_IOS_DEVELOPER_ROOT "/Developer/Platforms/${IOS_PLATFORM_LOCATION}/Developer")
endif (NOT DEFINED CMAKE_IOS_DEVELOPER_ROOT)
set (CMAKE_IOS_DEVELOPER_ROOT ${CMAKE_IOS_DEVELOPER_ROOT} CACHE PATH "Location of iOS Platform")

# Find and use the most recent iOS sdk 
if (NOT DEFINED CMAKE_IOS_SDK_ROOT)
    file (GLOB _CMAKE_IOS_SDKS "${CMAKE_IOS_DEVELOPER_ROOT}/SDKs/*")
    if (_CMAKE_IOS_SDKS) 
        list (SORT _CMAKE_IOS_SDKS)
        list (REVERSE _CMAKE_IOS_SDKS)
        list (GET _CMAKE_IOS_SDKS 0 CMAKE_IOS_SDK_ROOT)
    else (_CMAKE_IOS_SDKS)
        message (FATAL_ERROR "No iOS SDK's found in default seach path ${CMAKE_IOS_DEVELOPER_ROOT}. Manually set CMAKE_IOS_SDK_ROOT or install the iOS SDK.")
    endif (_CMAKE_IOS_SDKS)
    message (STATUS "Toolchain using default iOS SDK: ${CMAKE_IOS_SDK_ROOT}")
endif (NOT DEFINED CMAKE_IOS_SDK_ROOT)
set (CMAKE_IOS_SDK_ROOT ${CMAKE_IOS_SDK_ROOT} CACHE PATH "Location of the selected iOS SDK")

# Set the sysroot default to the most recent SDK
set (CMAKE_OSX_SYSROOT ${CMAKE_IOS_SDK_ROOT} CACHE PATH "Sysroot used for iOS support")

# set the architecture for iOS - using ARCHS_STANDARD_32_BIT sets armv6,armv7 and appears to be XCode's standard. 
# The other value that works is ARCHS_UNIVERSAL_IPHONE_OS but that sets armv7 only
set (CMAKE_OSX_ARCHITECTURES "$(ARCHS_STANDARD_64_BIT)" CACHE string  "Build architecture for iOS")

# Set the find root to the iOS developer roots and to user defined paths
set (CMAKE_FIND_ROOT_PATH ${CMAKE_IOS_DEVELOPER_ROOT} ${CMAKE_IOS_SDK_ROOT} ${CMAKE_PREFIX_PATH} CACHE string  "iOS find search path root")

# default to searching for frameworks first
set (CMAKE_FIND_FRAMEWORK FIRST)

# set up the default search directories for frameworks
set (CMAKE_SYSTEM_FRAMEWORK_PATH
    ${CMAKE_IOS_SDK_ROOT}/System/Library/Frameworks
    ${CMAKE_IOS_SDK_ROOT}/System/Library/PrivateFrameworks
    ${CMAKE_IOS_SDK_ROOT}/Developer/Library/Frameworks
)

# only search the iOS sdks, not the remainder of the host filesystem
set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
个人iOS_64.cmake

  若是上面的操做都没错,就会顺利生成一个project.xcodeproject文件,打开后记得作下面几件事情:

一、设置Product->Scheme->Edit Scheme为release模式

二、其余设置如图:

 

 

设置完毕后,点击运行,就能生成.a静态库了。这时候,你可使用下面的命令测试一下生成的静态库是否真的是iOS下的库。

打开terminal,cd到.a所在目录,假设静态库名字为libMyLib.a,输入: lipo -info libMyLib.a ,若是显示 Architectures in the fat file: lib7z_C++_938.a are: armv7 arm64  就说明操做无误了。而后,尽情享用你的静态库吧!

 


 

 

编译linux静态库(含64位和32位)

编译linux的静态库是很是简单的,只须要安装好cmake之后,运行如下命令便可:

cmake .
make

注意,若是是64位的系统,那么这样只能生成64位的静态库。想要编译出32位的静态库,则必需要先安装32位系统的编译工具链。

sudo apt-get install libx32gcc-4.8-dev
sudo apt-get install libc6-dev-i386
sudo apt-get install lib32stdc++6
sudo apt-get install g++-multilib

  而后,只须要指定cxx_flags为-m32便可,对应的CMake的写法为:

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -m32")

  最后用cmake生成makefile并make便可生成32位的静态库。

 


 

 

编译mac静态库

  这个比较简单,直接Xcode -GXcode,而后用xcodebuild命令便可。

 


 

 

 

编译Andoird静态库

  编译android库咱们一样能够引入一个toolchain文件,这里我是从android-cmake里面下载的。 在使用这个toolchain文件以前,咱们先要使用ndk自带的make-standalone-toolchain.sh脚原本生成对应平台的toolchain.这个脚本位于你的NDK的路径下面的buil/tools目录下。

  好比要生成arm平台的toolchain,咱们可使用下列命令:

sh $ANDROID_NDK/build/tools/make-standalone-toolchain.sh --platform=android-$ANDROID_API_LEVEL --install-dir=./android-toolchain --system=darwin-x86_64 --ndk-dir=/Users/guanghui/AndroidDev/android-ndk-r9d/ --toolchain=arm-linux-androideabi-4.8

  这里的$ANDROID_NDK为你的NDK的安装路径。这段命令能够生成arm的toolchain,最终能够编译出armeabi和armeabi-v7a静态库。 若是想生成x86的toolchain,指须要使用下列命令:

sh $ANDROID_NDK/build/tools/make-standalone-toolchain.sh --platform=android-$ANDROID_API_LEVEL --install-dir=./android-toolchain-x86 --system=darwin-x86_64 --ndk-dir=/Users/guanghui/AndroidDev/android-ndk-r9d/ --toolchain=x86-4.8

  

export PATH=$PATH:./android-toolchain/bin
export ANDROID_STANDALONE_TOOLCHAIN=./android-toolchain
cmake -DCMAKE_TOOLCHAIN_FILE=../android.toolchain.cmake -DANDROID_ABI="armeabi" ..

  


 

 

编译Win32,wp8和winrt静态库

这里直接使用cmake-gui生成对应的VS工程,而后再手动编译便可。

关于Box2D完整的跨平台编译脚本能够参考子龙山人Github

 


 

Reference:

以上内容除iOS部分比较多原创外,其余内容大部分转自子龙山人bolg

 

##THAT IS ALL.

 

=======================================

原创文章,转载请注明 编程小翁@博客园,邮件zilin_weng@163.com,微信Jilon,欢迎各位与我在C/C++/Objective-C/机器视觉等领域展开交流!

 =======================================

相关文章
相关标签/搜索