零售业 | 如何用Hadoop开启大数据之门?

在过去几年,全球零售商一直试图利用大数据创造价值。因为其大数据分析基础架构的限制,许多工做被一再推迟。Hadoop为这些零售商打开了新的大门,它能够解决他们在过去几年在大数据领域面临的许多问题和挑战。算法

Hadoop:跨多门编程语言的大数据解决方案   数据库

Hadoop背后的技术最初是由Google大约在10年前开发的。核心代码主要是用Java编写的,但有一些是用C编写的。然而,它运行在一个称为MapReduce的编程模型中,这容许开发人员用其余语言建立新的Hadoop代码。   编程

因为MapReduce环境能够接受不一样的编程语言代码,所以它很是通用。它能够提取,分析和操做许多不一样来源的大数据。它使用各类算法来进行关联规则学习,聚类,分类和回归。这些算法依赖于各类函数,包括贝叶斯,指望最大化和FP-Grown算法。   架构

Cloudera的首席执行官Mike Olson表示,Hadoop目前仍处于起步阶段,但它已经在塑造零售和金融领域厂商使用大数据的方式了。   jsp

“Hadoop平台旨在解决大量数据(多是复杂的和结构化的,而且不能很好地融入表中的数据)的混合问题。它适用于深度和计算量大的分析,例如聚类和定位...在在线零售中,若是想为客户提供更好的搜索答案,以提升用户的购买欲望,Hadoop能够很好地解决这一问题。   编程语言

Sears控股公司分部副总裁Aashish Chandra表示,Hadoop已经帮助公司下降了运营成本,提升了销售额。Chandra说,之前的大数据提取工具缺少他们所须要的功能。   函数

使用Hadoop挖掘销售点大数据   工具

销售点数据在零售业中起着很是重要的做用。公司依靠销售点大数据来预测将来销售,管理库存和项目人员需求。   oop

有许多销售点工具能够聚合销售信息并将其存储在大数据集中。然而,零售商难以用常规工具从PoS中挖掘大数据,即便它就存储在SQL数据库中。Hadoop使零售商更容易从客户数据库访问信息,此数据能够转换为其余格式,并与其余文件中的数据集合并。   学习

New Horizons CLC的John Soto声称Hadoop是零售业主要的改变者。   

“大型零售商永远不可能利用其传统的大数据基础设施进行这种分析。存储如此多的历史数据是十分昂贵的,而且数据类型复杂,而且须要至关多的准备以容许它与PoS事务组合。Hadoop解决了这两个问题,而且能够运行比旧系统更复杂的分析。”   

Hadoop可让零售商预测分析挑战   

Hadoop消除了零售商在利用大数据方面的一些障碍。这里有一些该技术带来的好处:

一、数据挖掘能力强。许多零售商都存储了TB级别的数据。这些数据集每每难以提取,由于它们有很深的嵌套。Hadoop有很是复杂的索引算法,所以它能够提取之前没法为大数据应用程序使用的数据。   

二、与不一样的数据格式兼容。零售商以许多不一样的格式存储数据。内部财务数据一般存储在.csv文件中。零售商一直在努力进行审计,由于他们没法比较结构化和非结构化数据集的数据。Hadoop能够提取多种格式的数据,进行分析并以更具凝聚力的形式呈现,它使大数据分析专家可以从多个来源的数据集之间寻找相关性。   

零售商已经发现了使用Hadoop的好处:   

一、Staples使用Hadoop分析大数据和预测将来的销售,这有助于他们更有效地分配资源给人员和库存。 据报道,自使用Hadoop以来,Staples的促销成本下降了25%。   

二、亚马逊使用Hadoop来改进欺诈检测模型。据报告,他们将信用卡欺诈减小了50%,由于他们能够更容易地识别出信用不佳的人。   

三、相比以前,Brands能够获得更详细的客户信息,这有助于他们改进营销策略。使用Hadoop和预测分析的零售商的销售额增加了73%。   

零售商只是开始认识到Hadoop和大数据的潜力。根据DeZyre所说,Hadoop最大的优点之一是它能够帮助零售商实时识别和应对挑战。这对防止欺诈尤为重要,由于罪犯老是在考虑新的骗局。   

“操纵者老是在发明新的欺诈工具和技术,零售商必须使用零售分析来识别欺诈活动,防止它们再次发生。使用大数据技术(如Hadoop,MapReduce和Spark),能够对超过50 PB的数据执行分析,以准确预测潜在风险。”

更多大数据与分析相关行业资讯、解决方案、案例、教程等请点击查看>>>

详情请咨询在线客服

客服热线:023-66090381

相关文章
相关标签/搜索