基于select 的I/O 复用技术速度过慢,从代码上分析,最主要的两点是socket
epoll 不须要以上两点操做函数
epoll_create测试
/* Creates an epoll instance. Returns an fd for the new instance. The "size" parameter is a hint specifying the number of file descriptors to be associated with the new instance. The fd returned by epoll_create() should be closed with close(). */ extern int epoll_create (int __size) __THROW;
epoll_ctlui
/* Manipulate an epoll instance "epfd". Returns 0 in case of success, -1 in case of error ( the "errno" variable will contain the specific error code ) The "op" parameter is one of the EPOLL_CTL_* constants defined above. The "fd" parameter is the target of the operation. The "event" parameter describes which events the caller is interested in and any associated user data. */ extern int epoll_ctl (int __epfd, int __op, int __fd, struct epoll_event *__event) __THROW;
epoll_wait操作系统
/* Wait for events on an epoll instance "epfd". Returns the number of triggered events returned in "events" buffer. Or -1 in case of error with the "errno" variable set to the specific error code. The "events" parameter is a buffer that will contain triggered events. The "maxevents" is the maximum number of events to be returned ( usually size of "events" ). The "timeout" parameter specifies the maximum wait time in milliseconds (-1 == infinite). This function is a cancellation point and therefore not marked with __THROW. */ extern int epoll_wait (int __epfd, struct epoll_event *__events, int __maxevents, int __timeout);
epoll_eventrest
struct epoll_event { uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */ } __EPOLL_PACKED;
epoll_data_tcode
typedef union epoll_data { void *ptr; int fd; uint32_t u32; uint64_t u64; } epoll_data_t;
epoll.cserver
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #include <sys/epoll.h> #define BUF_SIZE 100 #define EPOLL_SIZE 50 void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } int main(int argc, char *argv[]) { int serv_sock, clnt_sock; struct sockaddr_in serv_adr, clnt_adr; socklen_t adr_sz; int str_len, i; char buf[BUF_SIZE]; struct epoll_event *ep_events; struct epoll_event event; int epfd, event_cnt; if (argc != 2) { printf("Usage : %s <port> \n", argv[0]); exit(1); } serv_sock = socket(PF_INET, SOCK_STREAM, 0); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family = AF_INET; serv_adr.sin_addr.s_addr = htonl(INADDR_ANY); serv_adr.sin_port = htons(atoi(argv[1])); if (bind(serv_sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1) error_handling("bind error"); if (listen(serv_sock, 5) == -1) error_handling("listen error"); epfd = epoll_create(EPOLL_SIZE); //可忽略这个参数,填入的参数为操做系统参考 ep_events = malloc(sizeof(struct epoll_event) * EPOLL_SIZE); event.events = EPOLLIN; //读取数据 event.data.fd = serv_sock; epoll_ctl(epfd, EPOLL_CTL_ADD, serv_sock, &event); //epoll例程epfd 中添加文件描述符 serv_sock,目的是监听 enevt 中的事件 while (1) { event_cnt = epoll_wait(epfd, ep_events, EPOLL_SIZE, -1); //获取改变了的文件描述符,返回数量 if (event_cnt == -1) { puts("epoll_wait error"); break; } for (i = 0; i < event_cnt; i++) { if (ep_events[i].data.fd == serv_sock) //客户端请求链接 { adr_sz = sizeof(clnt_adr); clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &adr_sz); event.events = EPOLLIN; event.data.fd = clnt_sock; //把客户端套接字添加进去 epoll_ctl(epfd, EPOLL_CTL_ADD, clnt_sock, &event); printf("connected client : %d \n", clnt_sock); } else //客户端套接字 { str_len = read(ep_events[i].data.fd, buf, BUF_SIZE); if (str_len == 0) { epoll_ctl(epfd, EPOLL_CTL_DEL, ep_events[i].data.fd, NULL); //从epoll中删除套接字 close(ep_events[i].data.fd); printf("closed client : %d \n", ep_events[i].data.fd); } else { printf("Message from client: %s\n", buf); write(ep_events[i].data.fd, buf, str_len); } } } } close(serv_sock); close(epfd); return 0; }
client.c对象
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #define BUF_SIZE 100 void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } int main(int argc, char *argv[]) { int sock; char message[BUF_SIZE]="Hello World"; int str_len; struct sockaddr_in serv_adr; if (argc != 3) { printf("Usage : %s <IP> <port>\n", argv[0]); exit(1); } sock = socket(PF_INET, SOCK_STREAM, 0); if (sock == -1) error_handling("socket error"); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family = AF_INET; serv_adr.sin_addr.s_addr = inet_addr(argv[1]); serv_adr.sin_port = htons(atoi(argv[2])); if (connect(sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1) error_handling("connect error!"); else puts("Connected..........."); write(sock, message, strlen(message)); str_len = read(sock, message, BUF_SIZE - 1); message[str_len] = 0; printf("Message from server: %s\n", message); close(sock); return 0; }
connected client : 5 Message from client: Hello World closed client : 5 Connected........... Message from server: Hello World
条件触发和边缘触发的区别在于发生时间的时间点事件
epoll 默认以条件触发方式工做
条件触发时只要输入缓冲区任有数据须要读取,就会注册新的事件
ltServer.c
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #include <sys/epoll.h> #define BUF_SIZE 3 #define EPOLL_SIZE 50 void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } int main(int argc, char *argv[]) { int serv_sock, clnt_sock; struct sockaddr_in serv_adr, clnt_adr; socklen_t adr_sz; int str_len, i; char buf[BUF_SIZE]; struct epoll_event *ep_events; struct epoll_event event; int epfd, event_cnt; if (argc != 2) { printf("Usage : %s <port> \n", argv[0]); exit(1); } serv_sock = socket(PF_INET, SOCK_STREAM, 0); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family = AF_INET; serv_adr.sin_addr.s_addr = htonl(INADDR_ANY); serv_adr.sin_port = htons(atoi(argv[1])); if (bind(serv_sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1) error_handling("bind error"); if (listen(serv_sock, 5) == -1) error_handling("listen error"); epfd = epoll_create(EPOLL_SIZE); ep_events = malloc(sizeof(struct epoll_event) * EPOLL_SIZE); event.events = EPOLLIN; event.data.fd = serv_sock; epoll_ctl(epfd, EPOLL_CTL_ADD, serv_sock, &event); while (1) { event_cnt = epoll_wait(epfd, ep_events, EPOLL_SIZE, -1); //获取改变了的文件描述符,返回数量 if (event_cnt == -1) { puts("epoll_wait error"); break; } puts("call epoll_wait"); for (i = 0; i < event_cnt; i++) { if (ep_events[i].data.fd == serv_sock) { adr_sz = sizeof(clnt_adr); clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &adr_sz); event.events = EPOLLIN; event.data.fd = clnt_sock; epoll_ctl(epfd, EPOLL_CTL_ADD, clnt_sock, &event); printf("connected client : %d \n", clnt_sock); } else { str_len = read(ep_events[i].data.fd, buf, BUF_SIZE); if (str_len == 0) { epoll_ctl(epfd, EPOLL_CTL_DEL, ep_events[i].data.fd, NULL); //从epoll中删除套接字 close(ep_events[i].data.fd); printf("closed client : %d \n", ep_events[i].data.fd); } else { printf("Message from client: %s\n", buf); write(ep_events[i].data.fd, buf, str_len); } } } } close(serv_sock); close(epfd); return 0; }
client.c
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #define BUF_SIZE 1024 void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } int main(int argc, char *argv[]) { //sock int sock; char message[BUF_SIZE]; int str_len; struct sockaddr_in serv_adr; if (argc != 3) { printf("Usage : %s <IP> <port>\n", argv[0]); exit(1); } sock = socket(PF_INET, SOCK_STREAM, 0); if (sock == -1) error_handling("socket error"); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family = AF_INET; serv_adr.sin_addr.s_addr = inet_addr(argv[1]); serv_adr.sin_port = htons(atoi(argv[2])); if (connect(sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1) error_handling("connect error!"); else puts("Connected..........."); while (1) { fputs("Input message: ", stdout); fgets(message, BUF_SIZE, stdin); write(sock, message, strlen(message)); str_len = read(sock, message, BUF_SIZE - 1); message[str_len] = 0; printf("Message from server: %s\n", message); } close(sock); return 0; }
call epoll_wait connected client : 5 call epoll_wait Message from client: abc call epoll_wait Message from client: def call epoll_wait Message from client: g Connected........... Input message: abcdefg Message from server: abcdefg
在边缘触发模式中输入缓冲收到数据时仅注册一次该事件。
也就是说会一次性读完全部数据或者一次性写彻底部数据,那么在使用边缘触发时许将套接字改成非阻塞模式,不然可能由于较长的I/O 时间引发服务的卡顿。
etServer.c
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #include <sys/epoll.h> #include <fcntl.h> #include <errno.h> #define BUF_SIZE 3 #define EPOLL_SIZE 50 void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } void setnonblockingmode(int fd) { int flag = fcntl(fd, F_GETFL, 0); fcntl(fd, F_SETFL, flag | O_NONBLOCK); } int main(int argc, char *argv[]) { int serv_sock, clnt_sock; struct sockaddr_in serv_adr, clnt_adr; socklen_t adr_sz; int str_len, i; char buf[BUF_SIZE]; struct epoll_event *ep_events; struct epoll_event event; int epfd, event_cnt; if (argc != 2) { printf("Usage : %s <port> \n", argv[0]); exit(1); } serv_sock = socket(PF_INET, SOCK_STREAM, 0); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family = AF_INET; serv_adr.sin_addr.s_addr = htonl(INADDR_ANY); serv_adr.sin_port = htons(atoi(argv[1])); if (bind(serv_sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1) error_handling("bind error"); if (listen(serv_sock, 5) == -1) error_handling("listen error"); epfd = epoll_create(EPOLL_SIZE); ep_events = malloc(sizeof(struct epoll_event) * EPOLL_SIZE); setnonblockingmode(serv_sock); event.events = EPOLLIN; event.data.fd = serv_sock; epoll_ctl(epfd, EPOLL_CTL_ADD, serv_sock, &event); while (1) { event_cnt = epoll_wait(epfd, ep_events, EPOLL_SIZE, -1); if (event_cnt == -1) { puts("epoll_wait error"); break; } puts("call epoll_wait"); for (i = 0; i < event_cnt; i++) { if (ep_events[i].data.fd == serv_sock) { adr_sz = sizeof(clnt_adr); clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_adr, &adr_sz); setnonblockingmode(clnt_sock); event.events = EPOLLIN | EPOLLET; event.data.fd = clnt_sock; epoll_ctl(epfd, EPOLL_CTL_ADD, clnt_sock, &event); printf("connected client : %d \n", clnt_sock); } else { while (1) { str_len = read(ep_events[i].data.fd, buf, BUF_SIZE); if (str_len == 0) { epoll_ctl(epfd, EPOLL_CTL_DEL, ep_events[i].data.fd, NULL); //从epoll中删除套接字 close(ep_events[i].data.fd); printf("closed client : %d \n", ep_events[i].data.fd); break; } else if (str_len < 0) { if (errno == EAGAIN) //read 返回-1 且 errno 值为 EAGAIN ,意味读取了输入缓冲的所有数据 break; } else { printf("Message from client: %s\n", buf); write(ep_events[i].data.fd, buf, str_len); } } } } } close(serv_sock); close(epfd); return 0; }
client.c
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/socket.h> #define BUF_SIZE 1024 void error_handling(char *message) { fputs(message, stderr); fputc('\n', stderr); exit(1); } int main(int argc, char *argv[]) { //sock int sock; char message[BUF_SIZE]; int str_len; struct sockaddr_in serv_adr; if (argc != 3) { printf("Usage : %s <IP> <port>\n", argv[0]); exit(1); } sock = socket(PF_INET, SOCK_STREAM, 0); if (sock == -1) error_handling("socket error"); memset(&serv_adr, 0, sizeof(serv_adr)); serv_adr.sin_family = AF_INET; serv_adr.sin_addr.s_addr = inet_addr(argv[1]); serv_adr.sin_port = htons(atoi(argv[2])); if (connect(sock, (struct sockaddr *)&serv_adr, sizeof(serv_adr)) == -1) error_handling("connect error!"); else puts("Connected..........."); while (1) { fputs("Input message: ", stdout); fgets(message, BUF_SIZE, stdin); write(sock, message, strlen(message)); str_len = read(sock, message, BUF_SIZE - 1); message[str_len] = 0; printf("Message from server: %s\n", message); } close(sock); return 0; }
call epoll_wait connected client : 5 call epoll_wait Message from client: abc Message from client: def Message from client: fg call epoll_wait closed client : 5 Connected........... Input message: abcdeffg Message from server: abcdeffg Input message: ^C
分离了接受数据和处理数据的时间点 (一次性接受完数据,当有多个类别数据传输时能够保持各个类别数据的独立性,完整性由TCP保证)