吴恩达深度学习笔记(deeplearning.ai)之循环神经网络(RNN)(一)

RNN 首先思考这样一个问题:在处理序列学习问题时,为什么不使用标准的神经网络(建立多个隐藏层得到最终的输出)解决,而是提出了RNN这一新概念? 标准神经网络如下图所示: 标准神经网络在解决序列问题时,存在两个问题: 难以解决每个训练样例子输入输出长度不同的情况,因为序列的长度代表着输入层、输出层的维度,不可能每训练一个样例就改变一次网络结构。 标准的神经网络不能共享从文本不同位置上学到的特征。举
相关文章
相关标签/搜索