2020年已通过去了,国外的一家专门提供Python服务的网站Troy Labs,盘点出了2020年发布的Python库Top10。html
上榜的有FastAPI的升级版Typer、将CLI变成彩色的Rich、基于GUI框架的Dear PyGui、还有精简报错信息的PrettyErrors……总有一款是你想要的。python
下面就让咱们一块儿来看看吧~git
Typer跟FastAPI的原理相同,都是Python上用来构建API服务的一个高性能框架。程序员
它是FastAPI的升级版,不只可以准确地记录代码,还可以轻松地进行CLI验证。github
Typer易于学习和使用,不须要用户阅读复杂的教程文档便可上手。支持编辑器(如VSCode)代码自动补全,提升开发人员的开发效率,减小bug的数量。编程
其次,Typer还能配合命令行神器Click使用,就能够利用Click的优势和插件,实现更复杂的功能。网络
开源地址:
https://github.com/tiangolo/t...数据结构
谁规定CLI界面必定得是黑白的?它也能够是彩色的。多线程
Rich API不只可以在终端输出提供丰富的彩色文本和精美的格式,还提供了精美的表格、进度条、编辑器、追踪器、语法高亮等。以下图所示。框架
它还能够安装在Python REPL上,全部的数据结构均可以漂亮地输出或标注。
总而言之,它是彩色的、漂亮的、强大的。
Rich兼容性也不错,适用于Linux,Mac和Windows等多种系统。真彩色/表情符号可与新的Windows终端一块儿使用。
可是请注意,Rich必需要Python 3.6.1或以上版本。
开源地址:
https://github.com/willmcguga...
如上所示,虽然终端应用程序能够作成很漂亮的样子。可是,你可能还须要一个真正的GUI。
Dear PyGui是一个便于使用、功能强大的Python GUI框架。可是它与其余的Python GUI却有着根本上的不一样。
它使用了即时模式范式和计算机的GPU来实现动态界面。即时模式范式在视频游戏中很是流行,这意味着它的动态GUI不须要保留任何数据,而是逐帧独立绘制的。同时,它还使用GPU来建构动态界面。
Dear PyGui还能够绘图、建立主题、建立2D游戏,还拥有一些小工具,好比说内置文档、日志记录、源代码查看器之类的,这些小工具能够协助App的开发。
支持它的系统有:Windows 10(DirectX 11),Linux(OpenGL 3)和macOS(Metal)等。
开源地址:
https://github.com/hoffstadt/...
PrettyErrors是一个精简Python错误信息的工具,特色是界面十分简洁友好。
它最显著的功能是支持在终端进行彩色输出,标注出文件栈踪影,发现错误信息,过滤掉冗余信息,提取出关键部分,而且进行彩色标注,从而提升开发者的效率。
并且它能够不用安装,直接被导入项目中使用,可是须要先配置一些参数,其导入和配置的参数以下:
开源地址:
https://github.com/onelivesle...
程序员在编程的时候,有时候须要跟同事解释他设计的程序代码之间复杂的结构关系,然而这不是一两句话能说清楚的,须要画表或者作脉络图。
通常状况下,程序员使用GUI工具处理图表,并将文稿进行可视化处理。可是还有更好的方法,好比说使用Diagrams库。
Diagrams让不须要任何设计类工具,直接在Python代码中绘制云系统结构。它们的图标来自多家云服务商,包括AWS, Azure, GCP等。
仅需几行代码,就能够简单地创造出箭头符号和结构图。
因为它使用Graphviz来渲染图,因此还须要先安装好Graphviz。
开源地址:
https://github.com/mingrammer...
在作机器学习项目的时候,须要作一大堆的环境配置工做。所以,在一些复杂的应用程序中,配置管理工做也相应变得复杂。
Hydra可使配置工做变得简单。它可以从命令行或者配置文件中覆盖部分出来,无需维护类似的配置文件,用组合的方式进行配置,从而加快了实验运行速度。
Hydra兼容性强,拥有含插件的结构,可以很好地与开发者的操做文件融合。它的插件还能够实现直接经过命令行,就把代码发布到AWS或者其余云端系统。
Hydra也离不开OmegaConf,二者关系密不可分,OmegaConf为Hydra的分层配置系统提供了协同的API,两者协同运做可支持YAML、配置文件、对象、CLI参数等。
开源地址:
https://github.com/facebookre...
https://github.com/omry/omega...
PyTorch Lightning也是Facebook的一个研究成果。它是一个轻巧的PyTorch包装器,用于高性能AI研究,其最重要的特征是可以解析PyTorch代码,让代码研究成分和工程成分的分离。
它的扩展模型能够在任何硬件(CPU、GPU、TPU)上运行,且容易被复制,删除了大量的文件样本,保持了自身的灵活性,运行速度快。
Lightning可以使DL / ML研究的40多个部分实现自动化,例如GPU训练、分布式GPU(集群)训练、TPU训练等等……
由于Lightning将能够将文件自动导出到ONNX或TorchScript,因此它适用于进行快速推理的AI研究员、BERT或者自监督学习的研究团队等。
开源地址:
https://github.com/PyTorchLig...
Hummingbird是微软的一项研究成果,它可以将已经训练好的ML模型汇编成张量计算,从而不须要设计新的模型。
还容许用户使用神经网络框架(例如PyTorch)来加速传统的ML模型。
它的推理API跟sklearn范例十分类似,均可以重复使用现有的代码,可是它是用Hummingbird生成的代码去实现的。
Hummingbird还在Sklearn API以后提供了一个方便的统一推理API。这样就能够将Sklearn模型与Hummingbird生成的模型互换,而无需更改推理代码。
它之因此被重点关注,还由于它可以支持多种多样的模型和格式。
到目前为止,Hummingbird支持PyTorch、TorchScript、ONNX和TVM等各类ML模型。
开源地址:
https://github.com/microsoft/...
因为ML模型变得愈来愈复杂,还有不少超参数,因而就须要用到HiPlot。HiPlot是今年3月Facebook发行的一个库,主要用于处理高维数据。
Facebook AI经过几十个超参数和10万多个实验,利用HiPlot,来分析深度神经网络。
它是用平行图和其余的图像方式,帮助AI研究者发现高维数据的相关性和模型,是一款轻巧的交互式可视化工具。
HiPlot与其余可视化工具相比,有其特有的优势:
首先,它的互动性强,由于平行图是交互式的,因此可以知足多种状况下的图像可视化。
其次,它简单易用,能够经过IPython Notebook或者经过带有“ hiplot”命令的服务直接使用。
它还有具备可扩展性。默认状况下,HiPlot的Web服务能够解析CSV或JSON文件,还能够为其提供自定义Python解析器,将实验转换为HiPlot实验。
开源地址:
https://github.com/facebookre...
参考连接:
https://ai.facebook.com/blog/...
Scalene是一个用于Python脚本的CPU和内存分析器,可以正确处理多线程代码,还能区分Python代码和本机代码的运行时间。
你不须要修改代码,只需运行Scalene脚本,它就会生成一个文本形式的报告,显示出每一行代码的CPU和内存的使用状况。经过这个文本报告,开发人员能够提升代码的效率。
Scalene的速度快、准确率高,还可以对高耗能的代码行进行标注。
开源地址
https://github.com/emeryberge...
除了以上10个,还有多个高性能的Python库被点名了,例如Norfair、Quart、Alibi-detect、Einops……等等,详情查看底部连接。
那么,你今年有发现好用的Python库吗?
若是有的话,请在评论区一块儿分享一下呀~
参考连接:
https://tryolabs.com/blog/202...
Top 10 Reasons Why Python is So Popular With Developers in 2020
原文: https://www.qbitai.com/2021/0...