进程间通讯——队列和管道(multiprocess.Queue、multiprocess.Pipe)

进程:

  以前咱们已经了解了操做系统中进程的概念,程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程。程序和进程的区别就在于:程序是指令的集合,它是进程运行的静态描述文本;进程是程序的一次执行活动,属于动态概念。在多道编程中,咱们容许多个程序同时加载到内存中,在操做系统的调度下,能够实现并发地执行。这是这样的设计,大大提升了CPU的利用率。进程的出现让每一个用户感受到本身独享CPU,所以,进程就是为了在CPU上实现多道编程而提出的。html

 

进程间通讯  

用Queue模块:

IPC(Inter-Process Communication)python

队列 

概念介绍

队列是先进先出git

必须put放进东西后  才能get来取值github

建立共享的进程队列,Queue是多进程安全的队列,可使用Queue实现多进程之间的数据传递。 数据库

Queue([maxsize]) 
建立共享的进程队列。
参数 :maxsize是队列中容许的最大项数。若是省略此参数,则无大小限制。
底层队列使用管道和锁定实现。

 

Queue([maxsize]) 
建立共享的进程队列。maxsize是队列中容许的最大项数。若是省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还须要运行支持线程以便队列中的数据传输到底层管道中。 
Queue的实例q具备如下方法:

q.get( [ block [ ,timeout ] ] ) 
返回q中的一个项目。若是q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 若是设置为False,将引起Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。若是在制定的时间间隔内没有项目变为可用,将引起Queue.Empty异常。

q.get_nowait( ) 
同q.get(False)方法。

q.put(item [, block [,timeout ] ] ) 
将item放入队列。若是队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。若是设置为False,将引起Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引起Queue.Full异常。

q.qsize() 
返回队列中目前项目的正确数量。此函数的结果并不可靠,由于在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引起NotImplementedError异常。


q.empty() 
若是调用此方法时 q为空,返回True。若是其余进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。

q.full() 
若是q已满,返回为True. 因为线程的存在,结果也多是不可靠的(参考q.empty()方法)。。
方法介绍

 

队列中的进程的内容是共享的  由于不一样的进程的数据是隔离的  咱们能够用队列  让他们之间的数据进行共享编程

在进程中使用队列能够完成双向通讯json

 

from multiprocessing import Process ,Queue
q = Queue(10)
try:
    q.get_nowwait()  # 若是你用 nowwait的话你的获取嗯u过没有就不会阻塞就会报错
except:
    print('queue.Empty')
q.get()
for i in range(10):
    q.get(i)

print(q.qsize(10))

from  multiprocessing import Process ,Queue
q = Queue(10) # 建立一个能够存放10个值的队列
# try:
#     q.get_nowwait()
# except:
#     print('queue.Empty')
#
# q.get()


for  i in range(10):
    q.put(i)
print(q.qsize())  # 获取你的队列能够存放的最大值
print(q.full()) # 断定是否是满了  返回的值布尔值
# q.put(111)  # 给这个队列放进值
# print(q.grt())
print('*'*10)
print(q.empty()) # 断定队列是否是为空 返回的也是布尔值
 

 

 

生产者消费者模型
解决数据供需不平衡的状况
队列是进程安全的 内置了锁来保证队列中的每个数据都不会被多个进程重复取
import time
import random
from multiprocessing import Process,Queue
生产者消费者模型
解决数据供需不平衡的状况
队列是进程安全的 内置了锁来保证队列中的每个数据都不会被多个进程重复取
def consumer(q,name):
    while True:
        food = q.get()
        if food == 'done':break
        time.sleep(random.random())
        print('%s吃了%s'%(name,food))

def producer(q,name,food):
    for i in range(10):
        time.sleep(random.random())
        print('%s生产了%s%s'%(name,food,i))
        q.put('%s%s'%(food,i))

if __name__ == '__main__':
    q = Queue()
    p1 = Process(target=producer,args=[q,'Egon','泔水'])
    p2 = Process(target=producer,args=[q,'Yuan','骨头鱼刺'])
    p1.start()
    p2.start()
    Process(target=consumer,args=[q,'alex']).start()
    Process(target=consumer,args=[q,'wusir']).start()
    p1.join()
    p2.join()
    q.put('done')
    q.put('done')
生产者消费者来进性队列的安全

 

import time
import random
from multiprocessing import Process,JoinableQueue
def consumer(q,name):
    while True:
        food = q.get()
        time.sleep(random.random())
        print('%s吃了%s'%(name,food))
        q.task_done()

def producer(q,name,food):
    for i in range(10):
        time.sleep(random.random())
        print('%s生产了%s%s'%(name,food,i))
        q.put('%s%s'%(food,i))
    q.join()   # 等到全部的数据都被taskdone才结束

if __name__ == '__main__':
    q = JoinableQueue()
    p1 = Process(target=producer,args=[q,'Egon','泔水'])
    p2 = Process(target=producer,args=[q,'Yuan','骨头鱼刺'])
    p1.start()
    p2.start()
    c1 = Process(target=consumer,args=[q,'alex'])
    c2 = Process(target=consumer,args=[q,'wusir'])
    c1.daemon = True
    c2.daemon = True
    c1.start()
    c2.start()
    p1.join()
    p2.join()

# producer
    # put
    # 生产彻底部的数据就没有其余工做了
    # 在生产数据方 : 容许执行q.join
    # join会发起一个阻塞,直到全部当前队列中的数据都被消费
# consumer
    # get 获取到数据
    # 处理数据
    # q.task_done()  告诉q,刚刚从q获取的数据已经处理完了

# consumer每完成一个任务就会给q发送一个taskdone
# producer在全部的数据都生产完以后会执行q.join()
# producer会等待consumer消费完数据才结束
# 主进程中对producer进程进行join
# 主进程中的代码会等待producer执行完才结束
# producer结束就意味着主进程代码的结束
# consumer做为守护进程结束

# consumer中queue中的全部数据被消费
# producer join结束
# 主进程的代码结束
# consumer结束
# 主进程结束
例子

 

 

Queue([maxsize]) 
建立共享的进程队列。maxsize是队列中容许的最大项数。若是省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还须要运行支持线程以便队列中的数据传输到底层管道中。 
Queue的实例q具备如下方法:

q.get( [ block [ ,timeout ] ] ) 
返回q中的一个项目。若是q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 若是设置为False,将引起Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。若是在制定的时间间隔内没有项目变为可用,将引起Queue.Empty异常。

q.get_nowait( ) 
同q.get(False)方法。

q.put(item [, block [,timeout ] ] ) 
将item放入队列。若是队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。若是设置为False,将引起Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引起Queue.Full异常。

q.qsize() 
返回队列中目前项目的正确数量。此函数的结果并不可靠,由于在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引起NotImplementedError异常。


q.empty() 
若是调用此方法时 q为空,返回True。若是其余进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。

q.full() 
若是q已满,返回为True. 因为线程的存在,结果也多是不可靠的(参考q.empty()方法)。

 

JoinableQueue([maxsize]) 
建立可链接的共享进程队列。这就像是一个Queue对象,但队列容许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。 数组

JoinableQueue的实例p除了与Queue对象相同的方法以外,还具备如下方法:

q.task_done() 
使用者使用此方法发出信号,表示q.get()返回的项目已经被处理。若是调用此方法的次数大于从队列中删除的项目数量,将引起ValueError异常。

q.join() 
生产者将使用此方法进行阻塞,直到队列中全部项目均被处理。阻塞将持续到为队列中的每一个项目均调用q.task_done()方法为止。 
下面的例子说明如何创建永远运行的进程,使用和处理队列上的项目。生产者将项目放入队列,并等待它们被处理。
方法介绍

 

from multiprocessing import Process,JoinableQueue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))
        q.task_done() #向q.join()发送一次信号,证实一个数据已经被取走了

def producer(name,q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='%s%s' %(name,i)
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
    q.join() #生产完毕,使用此方法进行阻塞,直到队列中全部项目均被处理。


if __name__ == '__main__':
    q=JoinableQueue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=('包子',q))
    p2=Process(target=producer,args=('骨头',q))
    p3=Process(target=producer,args=('泔水',q))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))
    c2=Process(target=consumer,args=(q,))
    c1.daemon=True
    c2.daemon=True

    #开始
    p_l=[p1,p2,p3,c1,c2]
    for p in p_l:
        p.start()

    p1.join()
    p2.join()
    p3.join()
    print('') 
    
    #主进程等--->p1,p2,p3等---->c1,c2
    #p1,p2,p3结束了,证实c1,c2确定全都收完了p1,p2,p3发到队列的数据
    #于是c1,c2也没有存在的价值了,不须要继续阻塞在进程中影响主进程了。应该随着主进程的结束而结束,因此设置成守护进程就能够了。
JoinableQueue队列实现消费之生产者模型

 

 

管道:

管道是双向通讯,数据进程不安全,队列是管道加锁来实现的安全

#建立管道的类:
Pipe([duplex]):在进程之间建立一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的链接对象,强调一点:必须在产生Process对象以前产生管道
#参数介绍:
dumplex:默认管道是全双工的,若是将duplex射成False,conn1只能用于接收,conn2只能用于发送。
#主要方法:
    conn1.recv():接收conn2.send(obj)发送的对象。若是没有消息可接收,recv方法会一直阻塞。若是链接的另一端已经关闭,那么recv方法会抛出EOFError。
    conn1.send(obj):经过链接发送对象。obj是与序列化兼容的任意对象
 #其余方法:
conn1.close():关闭链接。若是conn1被垃圾回收,将自动调用此方法
conn1.fileno():返回链接使用的整数文件描述符
conn1.poll([timeout]):若是链接上的数据可用,返回True。timeout指定等待的最长时限。若是省略此参数,方法将当即返回结果。若是将timeout射成None,操做将无限期地等待数据到达。
 
conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。若是进入的消息,超过了这个最大值,将引起IOError异常,而且在链接上没法进行进一步读取。若是链接的另一端已经关闭,不再存在任何数据,将引起EOFError异常。
conn.send_bytes(buffer [, offset [, size]]):经过链接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,而后调用c.recv_bytes()函数进行接收    
 
conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或相似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。若是消息长度大于可用的缓冲区空间,将引起BufferTooShort异常。
介绍
from multiprocessing import Process, Pipe


def f(conn):
    conn.send("Hello The_Third_Wave")
    conn.close()


if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    print(parent_conn.recv())
    p.join()
pipe初介绍

应该特别注意管道端点的正确管理问题。若是是生产者或消费者中都没有使用管道的某个端点,就应将它关闭。这也说明了为什么在生产者中关闭了管道的输出端,在消费者中关闭管道的输入端。若是忘记执行这些步骤,程序可能在消费者中的recv()操做上挂起。管道是由操做系统进行引用计数的,必须在全部进程中关闭管道后才能生成EOFError异常。所以,在生产者中关闭管道不会有任何效果,除非消费者也关闭了相同的管道端点。 服务器

 

# 管道
# from multiprocessing import Pipe
# left,right = Pipe()
# left.send('1234')
# print(right.recv())
# left.send('1234')
# print(right.recv())
管道的信息发送接收信息是不须要进行编码转码的
from multiprocessing import Process, Pipe

def f(parent_conn,child_conn):
    parent_conn.close() #不写close将不会引起EOFError
    while True:
        try:
            print(child_conn.recv())
        except EOFError:
            child_conn.close()
            break

if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(parent_conn,child_conn,))
    p.start()
    child_conn.close()
    parent_conn.send('hello')
    parent_conn.send('hello')
    parent_conn.send('hello')
    parent_conn.close()
    p.join()

 

进程之间的数据共享

展望将来,基于消息传递的并发编程是大势所趋

即使是使用线程,推荐作法也是将程序设计为大量独立的线程集合,经过消息队列交换数据。

这样极大地减小了对使用锁定和其余同步手段的需求,还能够扩展到分布式系统中。

但进程间应该尽可能避免通讯,即使须要通讯,也应该选择进程安全的工具来避免加锁带来的问题。

之后咱们会尝试使用数据库来解决如今进程之间的数据共享问题。

进程间数据是独立的,能够借助于队列或管道实现通讯,两者都是基于消息传递的
虽然进程间数据独立,但能够经过Manager实现数据共享,事实上Manager的功能远不止于此

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.
Manager模块介绍
from multiprocessing import Manager,Process,Lock
def work(d,lock):
    with lock: #不加锁而操做共享的数据,确定会出现数据错乱
        d['count']-=1

if __name__ == '__main__':
    lock=Lock()
    with Manager() as m:
        dic=m.dict({'count':100})
        p_l=[]
        for i in range(100):
            p=Process(target=work,args=(dic,lock))
            p_l.append(p)
            p.start()
        for p in p_l:
            p.join()
        print(dic)
Manager例子
from multiprocessing import Manager,Process,Lock
def func(dic,lock):
    # lock.acquire()
    # dic['count'] = dic['count']-1
    # lock.release()
    with lock:    # 上下文管理 :必须有一个开始动做 和 一个结束动做的时候
        dic['count'] = dic['count'] - 1

if __name__ == '__main__':
    m = Manager()
    lock = Lock()
    dic = m.dict({'count':100})
    p_lst = []
    for i in range(100):
        p = Process(target=func,args=[dic,lock])
        p_lst.append(p)
        p.start()
    for p in p_lst:p.join()
    print(dic)

# 同一台机器上 : Queue
# 在不一样台机器上 :消息中间件

 

 

进程池和multiprocess.Pool模块

进程池

 

为何要有进程池?进程池的概念。

 

在程序实际处理问题过程当中,忙时会有成千上万的任务须要被执行,闲时可能只有零星任务。那么在成千上万个任务须要被执行的时候,咱们就须要去建立成千上万个进程么?首先,建立进程须要消耗时间,销毁进程也须要消耗时间。第二即使开启了成千上万的进程,操做系统也不能让他们同时执行,这样反而会影响程序的效率。所以咱们不能无限制的根据任务开启或者结束进程。那么咱们要怎么作呢?

 

在这里,要给你们介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等处处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。若是有不少任务须要执行,池中的进程数量不够,任务就要等待以前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增长操做系统的调度难度,还节省了开闭进程的时间,也必定程度上可以实现并发效果。

multiprocess.Pool模块

Pool([numprocess  [,initializer [, initargs]]]):建立进程池

概念介绍

1 numprocess:要建立的进程数,若是省略,将默认使用cpu_count()的值
2 initializer:是每一个工做进程启动时要执行的可调用对象,默认为None
3 initargs:是要传给initializer的参数组
参数介绍
1 p.apply(func [, args [, kwargs]]):在一个池工做进程中执行func(*args,**kwargs),而后返回结果。
2 '''须要强调的是:此操做并不会在全部池工做进程中并执行func函数。若是要经过不一样参数并发地执行func函数,必须从不一样线程调用p.apply()函数或者使用p.apply_async()'''
3 
4 p.apply_async(func [, args [, kwargs]]):在一个池工做进程中执行func(*args,**kwargs),而后返回结果。
5 '''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操做,不然将接收其余异步操做中的结果。'''
6    
7 p.close():关闭进程池,防止进一步操做。若是全部操做持续挂起,它们将在工做进程终止前完成
8 
9 P.jion():等待全部工做进程退出。此方法只能在close()或teminate()以后调用
主要方法
1 方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具备如下方法
2 obj.get():返回结果,若是有必要则等待结果到达。timeout是可选的。若是在指定时间内尚未到达,将引起一场。若是远程操做中引起了异常,它将在调用此方法时再次被引起。
3 obj.ready():若是调用完成,返回True
4 obj.successful():若是调用完成且没有引起异常,返回True,若是在结果就绪以前调用此方法,引起异常
5 obj.wait([timeout]):等待结果变为可用。
6 obj.terminate():当即终止全部工做进程,同时不执行任何清理或结束任何挂起工做。若是p被垃圾回收,将自动调用此函数
其余方法

 

 '''
一 进程池与线程池
在刚开始学多进程或多线程时,咱们火烧眉毛地基于多进程或多线程实现并发的套接字通讯,
然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,
这会对服务端主机带来巨大的压力,甚至于不堪重负而瘫痪,因而咱们必须对服务端开启的进程数或线程数加以控制,
让机器在一个本身能够承受的范围内运行,这就是进程池或线程池的用途,
例如进程池,就是用来存放进程的池子,本质仍是基于多进程,只不过是对开启进程的数目加上了限制
''' 
进程池通常就是运用在服务端口的,好比12306官网就是这样的,若是不进行限定的话 同时无限个进程一块儿来访问的话就会引发服务器的崩溃的


同步和异步
import os,time
from multiprocessing import Pool

def work(n):
    print('%s run' %os.getpid())
    time.sleep(3)
    return n**2

if __name__ == '__main__':
    p=Pool(3) #进程池中从无到有建立三个进程,之后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=p.apply(work,args=(i,)) # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程当中可能有阻塞也可能没有阻塞
                                    # 但无论该任务是否存在阻塞,同步调用都会在原地等着
    print(res_l)
进程池的同步调用

 

import os
import time
import random
from multiprocessing import Pool

def work(n):
    print('%s run' %os.getpid())
    time.sleep(random.random())
    return n**2

if __name__ == '__main__':
    p=Pool(3) #进程池中从无到有建立三个进程,之后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=p.apply_async(work,args=(i,)) # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
                                          # 返回结果以后,将结果放入列表,归还进程,以后再执行新的任务
                                          # 须要注意的是,进程池中的三个进程不会同时开启或者同时结束
                                          # 而是执行完一个就释放一个进程,这个进程就去接收新的任务。  
        res_l.append(res)

    # 异步apply_async用法:若是使用异步提交的任务,主进程须要使用jion,等待进程池内任务都处理完,而后能够用get收集结果
    # 不然,主进程结束,进程池可能还没来得及执行,也就跟着一块儿结束了
    p.close()
    p.join()
    for res in res_l:
        print(res.get()) #使用get来获取apply_aync的结果,若是是apply,则没有get方法,由于apply是同步执行,马上获取结果,也根本无需get
进程池的异步调用

 

import time
import random
from multiprocessing import Pool
def func(i):
    print('func%s' % i)
    time.sleep(random.randint(1,3))
    return i**2
if __name__ == '__main__':
    p = Pool(5)
    ret_l = []
    for i in range(15):
        # p.apply(func=func,args=(i,))    # 同步调用
        ret = p.apply_async(func=func,args=(i,))# 异步调用
        ret_l.append(ret)
    for ret in ret_l : print(ret.get())
    # 主进程和全部的子进程异步了

 

 

回调函数:

须要回调函数的场景:进程池中任何一个任务一旦处理完了,就当即告知主进程:我好了额,你能够处理个人结果了。主进程则调用一个函数去处理该结果,该函数即回调函数

咱们能够把耗时间(阻塞)的任务放到进程池中,而后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。
from multiprocessing import Pool
import requests
import json
import os

def get_page(url):
    print('<进程%s> get %s' %(os.getpid(),url))
    respone=requests.get(url)
    if respone.status_code == 200:
        return {'url':url,'text':respone.text}

def pasrse_page(res):
    print('<进程%s> parse %s' %(os.getpid(),res['url']))
    parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
    with open('db.txt','a') as f:
        f.write(parse_res)


if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://help.github.com/',
        'http://www.sina.com.cn/'
    ]

    p=Pool(3)
    res_l=[]
    for url in urls:
        res=p.apply_async(get_page,args=(url,),callback=pasrse_page)
        res_l.append(res)

    p.close()
    p.join()
    print([res.get() for res in res_l]) #拿到的是get_page的结果,其实彻底不必拿该结果,该结果已经传给回调函数处理了

'''
打印结果:
<进程3388> get https://www.baidu.com
<进程3389> get https://www.python.org
<进程3390> get https://www.openstack.org
<进程3388> get https://help.github.com/
<进程3387> parse https://www.baidu.com
<进程3389> get http://www.sina.com.cn/
<进程3387> parse https://www.python.org
<进程3387> parse https://help.github.com/
<进程3387> parse http://www.sina.com.cn/
<进程3387> parse https://www.openstack.org
[{'url': 'https://www.baidu.com', 'text': '<!DOCTYPE html>\r\n...',...}]
'''
使用多进程请求多个url来减小网络等待浪费的时间
import os
from urllib.request import urlopen
from multiprocessing import Pool
def get_url(url):
    print('-->',url,os.getpid())
    ret = urlopen(url)
    content = ret.read()
    return url

def call(url):
    # 分析
    print(url,os.getpid())

if __name__ == '__main__':
    print(os.getpid())
    l = [
        'http://www.baidu.com',  # 5
        'http://www.sina.com',
        'http://www.sohu.com',
        'http://www.sogou.com',
        'http://www.qq.com',
        'http://www.bilibili.com',  #0.1
    ]
    p = Pool(5)   # count(cpu)+1
    ret_l = []
    for url in l:
        ret = p.apply_async(func = get_url,args=[url,],callback=call)
        ret_l.append(ret)
    for ret in ret_l : ret.get()


# 回调函数
# 在进程池中,起了一个任务,这个任务对应的函数在执行完毕以后
# 的返回值会自动做为参数返回给回调函数
# 回调函数就根据返回值再进行相应的处理

# 回调函数 是在主进程执行的
相关文章
相关标签/搜索