除了在goroutine之间安全的传递数据以外,在看了《Concurrency in Go》以后,感慨channel还有那么多模式可供使用,在我的的学习中总结了如下几种经常使用的模式sql
咱们以爬虫为例,通常爬虫分为以下步骤:安全
抓取页面 -> 解析页面 -> 整合数据分析 -> 分析结果入库函数
若是你把上面全部的步骤都放在一个函数里面处理,那会是多难看,多难以维护,从解耦角度考虑,咱们能够起四个进程,分别承担不一样的角色,例如,进程1负责抓取页面, 进程2负责解析页面,等等,各个进程拿到一个数据后,交给下一个进程来处理,这就是pipeline的基本思想,每一个角色只负责关心本身的东西学习
给定一个数n,执行 (n2 + 1) 2的操做code
func pipeline() { generator := func(done chan interface{}, intergers ...int) <-chan int { inStream := make(chan int) go func() { defer close(inStream) for _, i := range intergers { select { case <-done: return case inStream <- i: } } }() return inStream } add := func(done <-chan interface{}, inStream <-chan int, increment int) <-chan int { addInStream := make(chan int) go func() { defer close(addInStream) for i := range inStream { select { case <-done: return case addInStream <- i + increment: } } }() return addInStream } multiply := func(done <-chan interface{}, inStream <-chan int, increment int) <-chan int { multiplyInStream := make(chan int) go func() { defer close(multiplyInStream) for i := range inStream { select { case <-done: return case multiplyInStream <- i * increment: } } }() return multiplyInStream } done := make(chan interface{}) defer close(done) inStream := generator(done, []int{1, 2, 3, 4, 5, 6, 7}...) pipeline := multiply(done, add(done, multiply(done, inStream, 2), 1), 2) for v := range pipeline { fmt.Println(v) } }
在pipeline模型中,是一种高效的流式处理,可是假如pipeline中有a,b,c三个环节,b环节处理的特别慢,这时候就会影响到c环节的处理,若是增长b环节进程处理的数量,也就能够减弱b环节的慢处理对整个pipeline的影响,那么a->多个b的过程就是 扇入, 多个b环节输出数据到c环节,就是扇出进程
func FanInFanOut() { producer := func(intergers ...int) <-chan interface{} { inStream := make(chan interface{}) go func() { defer close(inStream) for _, v := range intergers { time.Sleep(5 * time.Second) inStream <- v } }() return inStream } fanIn := func(channels ...<-chan interface{}, ) <-chan interface{} { var wg sync.WaitGroup multiplexStream := make(chan interface{}) multiplex := func(c <-chan interface{}) { defer wg.Done() for i := range c { multiplexStream <- i } } wg.Add(len(channels)) for _, c := range channels { go multiplex(c) } go func() { wg.Wait() close(multiplexStream) }() return multiplexStream } consumer := func(inStream <-chan interface{}) { for v := range inStream { fmt.Println(v) } } nums := runtime.NumCPU() producerStreams := make([]<-chan interface{}, nums) for i := 0; i < nums; i++ { producerStreams[i] = producer(i) } consumer(fanIn(producerStreams...)) }
假如你从channel中拿到了一条sql语句,这时候,你想对这条sql记录,分析并执行,那你就须要将这条sql分别转发给这三个任务对应的channel,tee-channel 就是作这个事情的ip
func teeChannel() { producer := func(intergers ...int) <-chan interface{} { inStream := make(chan interface{}) go func() { defer close(inStream) for _, v := range intergers { inStream <- v } }() return inStream } tee := func(in <-chan interface{}) (_, _ <-chan interface{}) { out1 := make(chan interface{}) out2 := make(chan interface{}) go func() { defer close(out1) defer close(out2) for val := range in { out1, out2 := out1, out2 for i := 0; i < 2; i++ { select { case out1 <- val: out1 = nil case out2 <- val: out2 = nil } } } }() return out1, out2 } out1, out2 := tee(producer(1, 2, 3, 4, 5)) for val1 := range out1 { fmt.Printf("out1: %v, out2: %v", val1, <-out2) } }
不管是前面提到的pipeline仍是扇入扇出,每一个goroutine都是对一个channel进行消费,可是实际场景中,可能会有多个channel来供给咱们消费,而做为消费者,咱们不关心这些值是来自于哪一个channel,这种状况下,处理一个充满channel的channel可能会不少。若是咱们定义一个功能,能够将充满channel的channel拆解为一个简单的channel,这将使消费者更专一于手头的工做,这就是桥接channel的思想rem
func bridge() { gen := func() <-chan <-chan interface{} { in := make(chan (<-chan interface{})) go func() { defer close(in) for i := 0; i < 10; i++ { stream := make(chan interface{}, 1) stream <- i close(stream) in <- stream } }() return in } bridge := func(in <-chan (<-chan interface{})) <-chan interface{} { valStream := make(chan interface{}) go func() { defer close(valStream) for { stream := make(<-chan interface{}) select { case maybeStream, ok := <-in: if ok == false { return } stream = maybeStream } for val := range stream { valStream <- val } } }() return valStream } for val := range bridge(gen()) { fmt.Println(val) } }