LeNet-5卷积神经网络的整体框架介绍

       在数字手写体识别中,LeNet-5卷积神经网络框架是每一个深度学习入门新手都必须要掌握的基本框架模型。本文对这个基本模型进行一下介绍: 可以看出LeNet-5包含输入层共有8层,每一层都包含多个参数(权重)。C层代表的是卷积层,通过卷积操作,可以使原信号特征增强,并且降低噪音。 S层是一个下采样层,利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息。下面针
相关文章
相关标签/搜索