决策树原理

决策树是一种非参数的监督学习方法,它主要用于分类和回归。决策树的目的是构造一种模型,使之能够从样本数据的特征属性中,通过学习简单的决策规则——IF THEN规则,从而预测目标变量的值。 例如,在某医院内,对因心脏病发作而入院治疗的患者,在住院的前24小时内,观测记录下来他们的19个特征属性——血压、年龄、以及其他17项可以综合判断病人状况的重要指标,用图1所示的决策树判断病人是否属于高危患者。在图
相关文章
相关标签/搜索