初到掘金,人生地不熟,喜欢的朋友,点个赞鼓励下新手呗~
java
参考文章:
https://mp.weixin.qq.com/s/VJif0D5PlrmyA1_emV-k0g
https://mp.weixin.qq.com/s/jU-UHkRbiruBq6BcNOjr5w
下面大量源码,请耐心点看~
android
Lifecycle 组件指的是 android.arch.lifecycle 包下提供的各类类与接口,可让开发者构建能感知其余组件(主要指Activity 、Fragment)生命周期(lifecycle-aware)的类。web
前面说了,Lifecycle可以让开发者构建能感知其余组件(主要指Activity 、Fragment)生命周期(lifecycle-aware)的类。划重点,让开发者构建能感知其余组件(主要指Activity 、Fragment)生命周期(lifecycle-aware)的类。在android开发的过程当中,咱们经常须要让一些操做可以感知Activity/Fragment的生命周期,从而实如今活动状态下容许操做,而在销毁状态下须要自动禁止操做,释放资源,防止内存泄露。例如大名鼎鼎的图片加载框架Glide在Acticiy/Fragment处于前台的时候加载图片,而在不可见的状态下中止图片的加载,又例如咱们但愿RxJava的Disposable可以在Activity/Fragment销毁是自动dispose。Lifecycle的出现,让开发者们可以轻易地实现上述的功能。安全
先定义基础IPresent接口:
session
public interface IPresent {
void onCreate();
void onStart();
void onResume();
void onPause();
void onStop();
void onDestory();
}复制代码
而后在自定义的Present中继承IPresent接口:app
public class MyPresent implements IPresent {
private String TAG = "tag";
@Override
public void onCreate() {
LogUtil.i(TAG, "onCreate");
}
@Override
public void onStart() {
LogUtil.i(TAG, "onStart");
}
@Override
public void onResume() {
LogUtil.i(TAG, "onResume");
}
@Override
public void onPause() {
LogUtil.i(TAG, "onPause");
}
@Override
public void onStop() {
LogUtil.i(TAG, "onStop");
}
@Override
public void onDestory() {
LogUtil.i(TAG, "onDestory");
}复制代码
最后在Activity依次调用回调方法分发事件:框架
public class MyActivity extends AppCompatActivity {
protected MyPresent myPresent;
@Override
public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) {
super.onCreate(savedInstanceState, persistentState);
myPresent = new MyPresent();
myPresent.onCreate();
}
@Override
protected void onStart() {
super.onStart();
myPresent.onStart();
}
@Override
protected void onResume() {
super.onResume();
myPresent.onResume();
}
@Override
protected void onPause() {
super.onPause();
myPresent.onPause();
}
@Override
protected void onStop() {
super.onStop();
myPresent.onStop();
}
@Override
protected void onDestroy() {
super.onDestroy();
myPresent.onDestory();
}
}复制代码
经过这么一个简单的例子,咱们能够看出,实现流程虽然很简单,可是代码实现繁琐,不够灵活,且代码侵入性太强。该例子只是展现了Present监听Activity生命周期,若是说还有类1,类2,类3......想要监听Activity的生命周期,那么就要在Activity的回调中添加对类1,类2,类3.....的回调。这就引发了一个思考,咱们是否可以实现Activity在生命周期发生变化时主动通知需求方的功能呢?能够的,答案就是Lifecycle。ide
先实现MyPresent,同时在每个方法实现上增长@OnLifecycleEvent(Lifecycle.Event.XXXX)注解,OnLifecycleEvent对应了Activity的生命周期方法:函数
public class MyPresent implements IPresent, LifecycleObserver {
@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
@Override
public void onCreate() {
LogUtil.i(TAG, "onCreate");
}
@OnLifecycleEvent(Lifecycle.Event.ON_START)
@Override
public void onStart() {
LogUtil.i(TAG, "onStart");
}
@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
@Override
public void onResume() {
LogUtil.i(TAG, "onResume");
}
@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
@Override
public void onPause() {
LogUtil.i(TAG, "onPause");
}
@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
@Override
public void onStop() {
LogUtil.i(TAG, "onStop");
}
@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
@Override
public void onDestory() {
LogUtil.i(TAG, "onDestory");
}
}复制代码
而后在须要监听的 Activity 中注册:源码分析
public class MyActivity extends AppCompatActivity {
protected MyPresent myPresent;
@Override
public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) {
super.onCreate(savedInstanceState, persistentState);
getLifecycle().addObserver(new MyPresent()); //添加监听对象
}
}复制代码
运行以下:
com.cimu.lifecycle I/MyPresent : onCreate()
com.cimu.lifecycle I/MyPresent : onStart()
com.cimu.lifecycle I/MyPresent : onResume()
com.cimu.lifecycle I/MyPresent : onPause()
com.cimu.lifecycle I/MyPresent : onStop()
com.cimu.lifecycle I/MyPresent : onDestroy()复制代码
是否是很简单,咱们但愿MyPresent感知监听Activity的生命周期,只须要在Activity中调用一句getLifecycle().addObserver(new MyPresent())就能够了。Lifecycle是怎样实现感知生命周期进而通知观察者的功能的呢?
进入源码分析了,前方大量眼花缭乱的代码~~~
首先须要知道三个关键的东西:
LifeCycle的源码分析,咱们分为两个步骤来分析:
从上面的MVP例子,咱们已经知道,注册只须要调用getLifecycle().addObserver(observer)便可,那么addObserver就能够做为源码分析的入口。
经过追踪,咱们发现getLifecycle返回的是SupportActivity中的mLifecycleRegistry,类型为LifecycleRegistry:
public class SupportActivity extends Activity implements LifecycleOwner {
......
private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap
= new FastSafeIterableMap<>();
private LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);
......
@Override
public Lifecycle getLifecycle() {
return mLifecycleRegistry;
}
......
}复制代码
那么addObserver其实是调用了LifecycleRegistry的addObserver方法,咱们来看一下这个方法:
@Override
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
//将传进来的监听者observer封装成一个ObserverWithState
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
//将封装好的ObserverWithState存入集合中
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// 咱们 dispatch 了一个事件给观察者,在回调观察者代码的时候,观察者可能会
// 修改咱们的状态
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}复制代码
关于注册流程,上面咱们重点关注封装了observer的ObserverWithState:
static class ObserverWithState {
State mState;
GenericLifecycleObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
//getCallback()经过不一样的类型的observer返回不一样GenericLifecycleObserver实现类
mLifecycleObserver = Lifecycling.getCallback(observer);
mState = initialState;
}
//生命周期event的分发,最终会调用到这个方法,这个方法中在调用了GenericLifecycleObserver的
//的onStateChanged方法
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}复制代码
public interface GenericLifecycleObserver extends LifecycleObserver {
void onStateChanged(LifecycleOwner source, Lifecycle.Event event);
}复制代码
ObserverWithState的构造方法调用了Lifecycling.getCallback()将传入的observer进行解析,生成了对接口类GenericLifecycleObserver的具体实现返回,而且在具体实现类中重写了onStateChanged方法,在onStateChanged实现了生命周期的分发。当Activity/Fragment的生命周期发生变化时,会遍历LifecycleRegistry中的mObserverMap集合,取出其中的ObserverWithState节点,调用它的onStateChanged方法,而在ObserverWithState的onStateChanged的方法中又调用了实现了具体生命周期分发的GenericLifecycleObserver.onStateChanged方法。
在分析Lifecycling.getCallback()方法以前,咱们先来看一下Lifecycle使用的三种基本使用方式:
public class MyLifeCycleObserver implements LifeCycleObserver {
@onLifecycleEvent(LifeCycle.Event.ON_CREATE)
public onCreate(LifeCycleOwner owner) {
//doSomething
}
@onLifecycleEvent(LifeCycle.Event.ON_DESTROY)
public onDestroy(LifeCycleOwner owner) {
//doSomething
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}
复制代码
上述的例子中的MyLifeCycleObserver将会在编译时,生成GeneratedAdapter代码以下:
public class MyLifeCycleObserver_LifecycleAdapter implements GeneratedAdapter {
final MyLifeCycleObserver mReceiver;
MyLifeCycleObserver_LifecycleAdapter(MyLifeCycleObserver receiver) {
//mReceiver就是咱们开发者传入的MyLifeCycleObserver
this.mReceiver = receiver;
}
//callMechod方法会被GenericLifecycleObserver的onStateChanged方法调用,用以分发生命周期
@Override
public void callMethods(LifecycleOwner owner, Lifecycle.Event event, boolean onAny, MethodCallsLogger logger) {
boolean hasLogger = logger != null;
if (onAny) {
return;
}
//若是生命周期事件是ON_CREATE,那么调用MyLifeCycleObserver的onCreate方法
if (event == Lifecycle.Event.ON_CREATE) {
if (!hasLogger || logger.approveCall("onCreate", 2)) {
mReceiver.onCreate(owner);
}
return;
}
//若是生命周期事件是ON_DESTROY,那么调用MyLifeCycleObserver的onDestroy方法
if (event == Lifecycle.Event.ON_DESTROY) {
if (!hasLogger || logger.approveCall("onDestroy", 2)) {
mReceiver.onDestroy(owner);
}
return;
}
}
}复制代码
public class MyLifeCycleObserver extends GenericLifeCycleObserver {
@override
void onStateChanged(LifecycleOwner source, Lifecycle.Event event) {
if(event == LifeCycleEvent.Event.ON_CREATE) {
//dosomething
} else if(event == LifeCycleEvent.Event.ON_DESTROY) {
//doSomething
}
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}复制代码
class MyLifycycleObserver implements DefaultLifecycleObserver {
@Override
public void onCreate(@NonNull LifecycleOwner owner) {
//doSomething
}
......
@Override
public void onDestroy(@NonNull LifecycleOwner owner) {
//doSomething
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}
复制代码
上面咱们学习了使用Lifecycle的三种基本方法,下面咱们简单看看Lifecycling.getCallback()方法是如何生成GenericLifecycleObserver具体实现类返回的:
//首先,咱们先熟悉一下resolveObserverCallbackType这个方法,这个方法在Lifecycling.getCallback()
//中被调用,getCallback中会根据它的返回值决定返回什么类型的GenericLifecycleObserver实现类
private static int resolveObserverCallbackType(Class<?> klass) {
if (klass.getCanonicalName() == null) {
return REFLECTIVE_CALLBACK;
}
//当使用第一种方式注解时,会自动生成代码,生成的adapter继承了GeneratedAdapter,
//因此返回值是GENERATED_CALLBACK
Constructor<? extends GeneratedAdapter> constructor = generatedConstructor(klass);
if (constructor != null) {
sClassToAdapters.put(klass, Collections
.<Constructor<? extends GeneratedAdapter>>singletonList(constructor));
return GENERATED_CALLBACK;
}
//hasLifecycleMethods方法是判断klass中是否包含了onLifecycleEvent.class注解
//若是包含,返回REFLECTIVE_CALLBACK
boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass);
if (hasLifecycleMethods) {
return REFLECTIVE_CALLBACK;
}
//递归调用resolveObserverCallbackType方法,遍历klass的父类
Class<?> superclass = klass.getSuperclass();
List<Constructor<? extends GeneratedAdapter>> adapterConstructors = null;
if (isLifecycleParent(superclass)) {
if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
adapterConstructors = new ArrayList<>(sClassToAdapters.get(superclass));
}
//遍历而且递归kclass的接口
for (Class<?> intrface : klass.getInterfaces()) {
if (!isLifecycleParent(intrface)) {
continue;
}
if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
if (adapterConstructors == null) {
adapterConstructors = new ArrayList<>();
}
adapterConstructors.addAll(sClassToAdapters.get(intrface));
}
if (adapterConstructors != null) {
sClassToAdapters.put(klass, adapterConstructors);
return GENERATED_CALLBACK;
}
return REFLECTIVE_CALLBACK;
}复制代码
//getCallBack的参数object是咱们getLifeCycle().addObserver(observer)时传入的监听者observer
static GenericLifecycleObserver getCallback(Object object) {
if (object instanceof FullLifecycleObserver) {
//第三种使用方式,由于DefaultLifecycleObserver继承与FullLifecycleObserver
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object);
}
if (object instanceof GenericLifecycleObserver) {
//第二种使用方式,当咱们使用直接继承GenericLifecycleObserver这种方法时,直接返回
return (GenericLifecycleObserver) object;
}
final Class<?> klass = object.getClass();
//第一种使用方式,当使用注解时,getObserverConstructorType的返回值是GENERATED_CALLBACK
int type = getObserverConstructorType(klass);
if (type == GENERATED_CALLBACK) {
List<Constructor<? extends GeneratedAdapter>> constructors = sClassToAdapters.get(klass);
if (constructors.size() == 1) {
GeneratedAdapter generatedAdapter = createGeneratedAdapter(constructors.get(0), object);
return new SingleGeneratedAdapterObserver(generatedAdapter);
}
GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
for (int i = 0; i < constructors.size(); i++) {
adapters[i] = createGeneratedAdapter(constructors.get(i), object);
}
return new CompositeGeneratedAdaptersObserver(adapters);
}
//当oberver都不符合上面几种类型时,会直接实例化ReflectiveGenericLifecycleObserver
//做为替代返回(通常状况下,是不会走到这里的,多是为了应对混淆机制而作的的一种安全模式)
//在ReflectiveGenericLifecycleObserver中会找oberver中的onLifecyleEvent注解,而且将这些带注解
//的方法生成MethodReference并添加到List<MethodReference>中,做为生命周期分发的调用方法
return new ReflectiveGenericLifecycleObserver(object);
}复制代码
好了,Lifecycling.getCallback()若是真的要详细的分析,篇幅会很大,在这里,咱们粗略的分析了下。你们若是想深刻了解,本身结合源码看是最好不过的。
总结一下注册的流程:
至于注销流程就很简单了,直接将observer从集合中remove,代码以下:
@Override
public void removeObserver(@NonNull LifecycleObserver observer) {
// we consciously decided not to send destruction events here in opposition to addObserver.
// Our reasons for that:
// 1. These events haven't yet happened at all. In contrast to events in addObservers, that
// actually occurred but earlier.
// 2. There are cases when removeObserver happens as a consequence of some kind of fatal
// event. If removeObserver method sends destruction events, then a clean up routine becomes
// more cumbersome. More specific example of that is: your LifecycleObserver listens for
// a web connection, in the usual routine in OnStop method you report to a server that a
// session has just ended and you close the connection. Now let's assume now that you
// lost an internet and as a result you removed this observer. If you get destruction
// events in removeObserver, you should have a special case in your onStop method that
// checks if your web connection died and you shouldn't try to report anything to a server.
mObserverMap.remove(observer);
}复制代码
咱们注册observer的时候,其实是调用了SupportActivity中的mLifecycleRegistry对象的方法,那么咱们分析下SupportActivity的onCreate方法:
@Override
@SuppressWarnings("RestrictedApi")
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ReportFragment.injectIfNeededIn(this);
}复制代码
在onCreate中调用了ReportFragment的injectIfNeedIn方法。这个方法其实就是往Activity中添加了一个Fragment。咱们知道,Fragment是依附于Activity上的,Fragment的生命周期跟随Activity的生命周期。既然这个ReportFragment可以感知Activity的生命周期,那么它是否是就是负责将生命周期事件分发给LifecycleObserver的呢?
public class ReportFragment extends Fragment {
private static final String REPORT_FRAGMENT_TAG = "android.arch.lifecycle"
+ ".LifecycleDispatcher.report_fragment_tag";
public static void injectIfNeededIn(Activity activity) {
// ProcessLifecycleOwner should always correctly work and some activities may not extend
// FragmentActivity from support lib, so we use framework fragments for activities
android.app.FragmentManager manager = activity.getFragmentManager();
if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
// Hopefully, we are the first to make a transaction.
manager.executePendingTransactions();
}
}
static ReportFragment get(Activity activity) {
return (ReportFragment) activity.getFragmentManager().findFragmentByTag(
REPORT_FRAGMENT_TAG);
}
private ActivityInitializationListener mProcessListener;
private void dispatchCreate(ActivityInitializationListener listener) {
if (listener != null) {
listener.onCreate();
}
}
private void dispatchStart(ActivityInitializationListener listener) {
if (listener != null) {
listener.onStart();
}
}
private void dispatchResume(ActivityInitializationListener listener) {
if (listener != null) {
listener.onResume();
}
}
@Override
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);
dispatchCreate(mProcessListener);
dispatch(Lifecycle.Event.ON_CREATE);
}
@Override
public void onStart() {
super.onStart();
dispatchStart(mProcessListener);
dispatch(Lifecycle.Event.ON_START);
}
@Override
public void onResume() {
super.onResume();
dispatchResume(mProcessListener);
dispatch(Lifecycle.Event.ON_RESUME);
}
@Override
public void onPause() {
super.onPause();
dispatch(Lifecycle.Event.ON_PAUSE);
}
@Override
public void onStop() {
super.onStop();
dispatch(Lifecycle.Event.ON_STOP);
}
@Override
public void onDestroy() {
super.onDestroy();
dispatch(Lifecycle.Event.ON_DESTROY);
// just want to be sure that we won't leak reference to an activity
mProcessListener = null;
}
private void dispatch(Lifecycle.Event event) {
Activity activity = getActivity();
if (activity instanceof LifecycleRegistryOwner) {
((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
return;
}
if (activity instanceof LifecycleOwner) {
Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
if (lifecycle instanceof LifecycleRegistry) {
((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
}
}
}
void setProcessListener(ActivityInitializationListener processListener) {
mProcessListener = processListener;
}
interface ActivityInitializationListener {
void onCreate();
void onStart();
void onResume();
}
}复制代码
ReportFragment的代码很好理解,咱们可以在代码里面发现Lifecycle.Event.xxx事件,而且在它的生命周期回调方法中将Lifecycle.Event.xxx事件传给了dispatch方法,很明显是用来分发生命周期的。在ReportFragment的dispatch方法中,调用了LifecycleRegistry的handleLifecycleEvent方法:
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}复制代码
在分析这个方法以前,咱们先要了解Lifecycle的事件与状态:
public abstract class Lifecycle {
public enum Event {
/** * Constant for onCreate event of the {@link LifecycleOwner}. */
ON_CREATE,
/** * Constant for onStart event of the {@link LifecycleOwner}. */
ON_START,
/** * Constant for onResume event of the {@link LifecycleOwner}. */
ON_RESUME,
/** * Constant for onPause event of the {@link LifecycleOwner}. */
ON_PAUSE,
/** * Constant for onStop event of the {@link LifecycleOwner}. */
ON_STOP,
/** * Constant for onDestroy event of the {@link LifecycleOwner}. */
ON_DESTROY,
/** * An {@link Event Event} constant that can be used to match all events. */
ON_ANY
}
public enum State {
/** * Destroyed state for a LifecycleOwner. After this event, this Lifecycle will not dispatch * any more events. For instance, for an {@link android.app.Activity}, this state is reached * <b>right before</b> Activity's {@link android.app.Activity#onDestroy() onDestroy} call. */
DESTROYED,
/** * Initialized state for a LifecycleOwner. For an {@link android.app.Activity}, this is * the state when it is constructed but has not received * {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} yet. */
INITIALIZED,
/** * Created state for a LifecycleOwner. For an {@link android.app.Activity}, this state * is reached in two cases: * <ul> * <li>after {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} call; * <li><b>right before</b> {@link android.app.Activity#onStop() onStop} call. * </ul> */
CREATED,
/** * Started state for a LifecycleOwner. For an {@link android.app.Activity}, this state * is reached in two cases: * <ul> * <li>after {@link android.app.Activity#onStart() onStart} call; * <li><b>right before</b> {@link android.app.Activity#onPause() onPause} call. * </ul> */
STARTED,
/** * Resumed state for a LifecycleOwner. For an {@link android.app.Activity}, this state * is reached after {@link android.app.Activity#onResume() onResume} is called. */
RESUMED;
}
}复制代码
Lifecycle.Event对应activity的各个声明周期,Lifecycle.State则是Lifecycle的状态。在LifecycleRegistry 中定义了状态间的转化关系:
public class LifecycleRegistry extends Lifecycle {
static State getStateAfter(Event event) {
switch (event) {
case ON_CREATE:
case ON_STOP:
return CREATED;
case ON_START:
case ON_PAUSE:
return STARTED;
case ON_RESUME:
return RESUMED;
case ON_DESTROY:
return DESTROYED;
case ON_ANY:
break;
}
throw new IllegalArgumentException("Unexpected event value " + event);
}
private static Event downEvent(State state) {
switch (state) {
case INITIALIZED:
throw new IllegalArgumentException();
case CREATED:
return ON_DESTROY;
case STARTED:
return ON_STOP;
case RESUMED:
return ON_PAUSE;
case DESTROYED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " + state);
}
private static Event upEvent(State state) {
switch (state) {
case INITIALIZED:
case DESTROYED:
return ON_CREATE;
case CREATED:
return ON_START;
case STARTED:
return ON_RESUME;
case RESUMED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " + state);
}
}复制代码
这三个方法,能够总结为下面这样一张图:
downEvent 在图中表示从一个状态到他下面的那个状态,upEvent 则是往上。
了解了 Lifecycle 的状态后,咱们继续来看 LifecycleRegistry。上面咱们知道,当Activity的生命周期发生变化后,ReportFragment会感知到,从而会调用到dispatch方法,最终调用到LifecycleRegistry的 handleLifecycleEvent方法:
public class LifecycleRegistry extends Lifecycle {
private int mAddingObserverCounter = 0;
private boolean mHandlingEvent = false;
private boolean mNewEventOccurred = false;
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}
private void moveToState(State next) {
if (mState == next) {
return;
}
mState = next;
// 当咱们在 LifecycleRegistry 回调 LifecycleObserver 的时候触发状态变化时,
// mHandlingEvent 为 true;
// 添加 observer 的时候,也可能会执行回调方法,这时候若是触发了状态变化,
// 则 mAddingObserverCounter != 0
if (mHandlingEvent || mAddingObserverCounter != 0) {
mNewEventOccurred = true;
// 不须要执行 sync。
// 执行到这里的状况是:sync() -> LifecycleObserver -> moveToState()
// 这里直接返回后,仍是会回到 sync(),而后继续同步状态给 observer
// we will figure out what to do on upper level.
return;
}
mHandlingEvent = true;
// sync() 会把状态的变化转化为生命周期事件,而后转发给 LifecycleObserver
sync();
mHandlingEvent = false;
}
}复制代码
LifecycleRegistry 原本要作的事实际上是很简单的,但因为他须要执行客户的代码,由此引入了不少额外的复杂度。缘由是,客户代码并不处在咱们的控制之下,他们可能作出任何能够作到的事。例如这里,在回调中又触发状态变化。相似的状况是,在持有锁的时候不调用客户代码,这个也会让实现变得比较复杂。
接下来咱们看 sync():
public class LifecycleRegistry extends Lifecycle {
/** * Custom list that keeps observers and can handle removals / additions during traversal. * * 这个 Invariant 很是重要,他会影响到 sync() 的逻辑 * Invariant: at any moment of time for observer1 & observer2: * if addition_order(observer1) < addition_order(observer2), then * state(observer1) >= state(observer2), */
private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap =
new FastSafeIterableMap<>();
private void sync() {
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
Log.w(LOG_TAG, "LifecycleOwner is garbage collected, you shouldn't try dispatch "
+ "new events from it.");
return;
}
while (!isSynced()) {
// mNewEventOccurred 是为了在 observer 触发状态变化时让 backwardPass/forwardPass()
// 提早返回用的。咱们刚准备调他们,这里设置为 false 便可。
mNewEventOccurred = false;
// no need to check eldest for nullability, because isSynced does it for us.
if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
// mObserverMap 里的元素的状态是非递增排列的,也就是说,队头的 state 最大
// 若是 mState 小于队列里最大的那个,说明有元素须要更新状态
// 为了维持 mObserverMap 的 Invariant,这里咱们须要从队尾往前更新元素的状态
backwardPass(lifecycleOwner);
}
Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
// 若是 mNewEventOccurred,说明在上面调用 backwardPass() 时,客户触发了状态修改
if (!mNewEventOccurred && newest != null
&& mState.compareTo(newest.getValue().mState) > 0) {
forwardPass(lifecycleOwner);
}
}
mNewEventOccurred = false;
}
// 判断是否须要同步,若是全部的observer的状态都已经同步完,返回 true,不然返回false
private boolean isSynced() {
if (mObserverMap.size() == 0) {
return true;
}
//eldestObserverState是最先添加的observer,newestObserverState是最新添加的observer
State eldestObserverState = mObserverMap.eldest().getValue().mState;
State newestObserverState = mObserverMap.newest().getValue().mState;
//由于咱们保证队头的state >= 后面的元素的state,因此只要判断头尾就够了
//若是最新的和最老的Observer的状态不一致或者当前的状态和最新的状态不一致时,那么须要进行状态同步
return eldestObserverState == newestObserverState && mState == newestObserverState;
}
}复制代码
sync() 的主要做用就是根据把 mObserverMap 里全部元素的状态都同步为 mState。咱们继续看剩下的 backwardPass/forwardPass:
public class LifecycleRegistry extends Lifecycle {
// 这段注释应该是这整个类里面最难理解的了吧,至少对于我来讲是这样
// we have to keep it for cases:
// void onStart() {
// // removeObserver(this),说明 this 是一个 LifecycleObserver
// // 因此这里说的是,咱们在回调里执行了下面两个操做
// mRegistry.removeObserver(this);
// mRegistry.add(newObserver);
// }
// 假定如今咱们要从 CREATED 转到 STARTED 状态(也就是说,mState 如今是 STARTED)。
// 这种状况下,只有将新的 observer 设置为 CREATED 状态,它的 onStart 才会被调用
// 为了获得这个 CREATED,在这里才引入了 mParentStates。在 forwardPass 中执行
// pushParentState(observer.mState) 时,observer.mState 就是咱们须要的 CREATED。
// backwardPass 的状况相似。
// newObserver should be brought only to CREATED state during the execution of
// this onStart method. our invariant with mObserverMap doesn't help, because parent observer
// is no longer in the map.
private ArrayList<State> mParentStates = new ArrayList<>();
//第一个while循坏遍历咱们存储观察者的集合,
//第二个是要处理各个状态通过的event
private void forwardPass(LifecycleOwner lifecycleOwner) {
// 从队头开始迭代
Iterator<Entry<LifecycleObserver, ObserverWithState>> ascendingIterator =
mObserverMap.iteratorWithAdditions();
while (ascendingIterator.hasNext() && !mNewEventOccurred) {
Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
// 可能在回调客户代码的时候,客户把本身移除了
&& mObserverMap.contains(entry.getKey()))) {
pushParentState(observer.mState);
//upEvent 返回所要经历的event
//例如:当前是 STARTED , 那么他的通过的 events 就是 ON_RESUME
observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState));
popParentState();
}
}
}
private void backwardPass(LifecycleOwner lifecycleOwner) {
// 从队尾开始迭代
Iterator<Entry<LifecycleObserver, ObserverWithState>> descendingIterator =
mObserverMap.descendingIterator();
while (descendingIterator.hasNext() && !mNewEventOccurred) {
Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
Event event = downEvent(observer.mState);
pushParentState(getStateAfter(event));
observer.dispatchEvent(lifecycleOwner, event);
popParentState();
}
}
}
private void popParentState() {
mParentStates.remove(mParentStates.size() - 1);
}
private void pushParentState(State state) {
mParentStates.add(state);
}
}复制代码
提示:在看这forwardPass以及backwardPass这两个方法时,参考上面的状态转换图
ObserverWithState
元素都处于CREATED
状态。此时接着收到了一个ON_START
事件,从图能够看出,接下来应该是要转换到STARTED
状态。因为STARTED
大于CREATED
,因此会执行forwardPass
方法。forwardPass
里调用 upEvent(observer.mState)
,返回从CREATED
往上到STARTED
须要发送的事件,也就是ON_START
,因而ON_START
事件发送给了观察者。LifecycleRegistry
的mState
处于RESUMED
状态。而后调用addObserver
方法新添加一个LifecycleObserver
,该observer会被封装成ObserverWithState
存进集合中,此时这个新的ObserverWithState
处于INITIALIZED
状态,因为RESUMED
大于INITIALIZED
,因此会执行forwardPass
方法。ObserverWithState
的状态会按照 INITIALIZED -> CREATED -> STARTED -> RESUMED
这样的顺序变迁。一些我的疑问:
由于不是全部的页面都继承AppCompatActivity,为了兼容非AppCompatActivity,因此封装一个一样具备生命周期的Fragment来给Lifecycle分发生命周期事件。显然Fragment 侵入性低。
因为 ActivityLifecycleCallbacks 的回调比 Fragment 和 Activity 还要早,实际上未真正执行对应的生命周期方法
Lifecycle的分析咱们在这里就到此为止了,最后附上幅流程图,帮助理解并记忆:
初到掘金,人生地不熟,喜欢的朋友,点个赞鼓励下新手呗~