在上一节中,HashMap在jdk 1.8中用了链表和红黑树两种方式解决冲突,在TreeMap中也是用红黑树存储的。下面分析一下红黑树的结构和基本操做。
上一节中已经描述了红黑树的基本概念和特征,下面直接经过一个例子分析红黑树的构造和调整方法。
红黑树是一棵二叉查找树,在二叉树的基础上增长了节点的颜色,下面是TreeMap中的红黑树定义:
private static final boolean RED = false; private static final boolean BLACK = true; static final class Entry<K,V> implements Map.Entry<K,V> { K key; V value; Entry<K,V> left; Entry<K,V> right; Entry<K,V> parent; boolean color = BLACK; /** * 给定key、value和父节点,构造一个新的。其中节点颜色为黑色 */ Entry(K key, V value, Entry<K,V> parent) { this.key = key; this.value = value; this.parent = parent; } }
红黑树的插入和删除,都有可能破坏其特性,就不是一棵红黑树了,因此要调整。调整的方法又两种,一种是改变某个节点的颜色,另一种是结构调整,包括左旋和右旋。 左旋:将X的节点的右儿子节点Y变为其父节点,而且将Y的左子树变为X的右子树,变换过程入下图
右旋:将X的节点的左儿子节点Y变为其父节点,而且将Y的右子树变为X的左子树,变换过程入下图
当在红黑树中插入一个节点后,可能会破坏红黑树的规则,首先再回顾一下红黑数的特色:node
从上面的条件能够看出,a确定是不会违背的。插入的节点不在根节点处,因此b也不会违背。插入的节点时非空节点,c也不会违背。最有可能违背的就是d和e。而在咱们插入节点时,先将要插入的节点颜色设置为红色,这样也就不会违背e。因此,插入后只须要调整不违背e就能够。
插入后调整须要分三种状况来处理:数据结构
插入的是根节点:app
处理方法是直接将根节点颜色设置为黑色
不须要处理this
这种又分为三种状况
下面假设插入节点为x,父节点为xp,祖父节点为xpp,祖父节点的左儿子为xppl,祖父节点的右儿子为xpprspa
处理逻辑:将父节点xp设为红色,祖父节点的儿子节点(xppl或者xppr)设为黑色,将祖父节点xpp设为红色,将祖父节点xpp设为当前节点,继续处理。code
处理逻辑:父节点xp做为当前节点x, 以当前节点x为支点进行左旋。ip
处理逻辑:将父节点xp设置为黑色,祖父节点xpp设置为红色,以祖父节点xpp为支点进行右旋rem
未完,待续。。。get
未完,待续。。。源码
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // red-black tree links TreeNode<K,V> left; TreeNode<K,V> right; //在节点删除后,需解除连接 TreeNode<K,V> prev; boolean red; TreeNode(int hash, K key, V val, Node<K,V> next) { super(hash, key, val, next); } /** * 返回根节点 */ final TreeNode<K,V> root() { for (TreeNode<K,V> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } } /** * 确保根节点就是第一个节点 */ static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) { int n; if (root != null && tab != null && (n = tab.length) > 0) { int index = (n - 1) & root.hash; TreeNode<K,V> first = (TreeNode<K,V>)tab[index]; //若是根节点不是第一个节点,进行调整 if (root != first) { Node<K,V> rn; tab[index] = root; TreeNode<K,V> rp = root.prev; if ((rn = root.next) != null) ((TreeNode<K,V>)rn).prev = rp; if (rp != null) rp.next = rn; if (first != null) first.prev = root; root.next = first; root.prev = null; } assert checkInvariants(root); } } /** * 根据hash值和key查询节点 */ final TreeNode<K,V> find(int h, Object k, Class<?> kc) { TreeNode<K,V> p = this; do { int ph, dir; K pk; TreeNode<K,V> pl = p.left, pr = p.right, q; if ((ph = p.hash) > h) p = pl; else if (ph < h) p = pr; else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if (pl == null) p = pr; else if (pr == null) p = pl; else if ((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if ((q = pr.find(h, k, kc)) != null) return q; else p = pl; } while (p != null); return null; } /** * 根据hash值和key查询节点 */ final TreeNode<K,V> getTreeNode(int h, Object k) { return ((parent != null) ? root() : this).find(h, k, null); } /** * 将链表转换为红黑树 */ final void treeify(Node<K,V>[] tab) { TreeNode<K,V> root = null; //从第一个节点开始 for (TreeNode<K,V> x = this, next; x != null; x = next) { next = (TreeNode<K,V>)x.next; x.left = x.right = null; //若是root节点为null,x为根节点,此节点为黑色,父节点为null if (root == null) { x.parent = null; x.red = false; root = x; } else { //x的key值 K k = x.key; //x的hash值 int h = x.hash; Class<?> kc = null; for (TreeNode<K,V> p = root;;) { int dir, ph; K pk = p.key; //左边 if ((ph = p.hash) > h) dir = -1; //右边 else if (ph < h) dir = 1; //经过仲裁方法判断 else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode<K,V> xp = p; //dir <=0 左子树搜索,而且判断左儿子是否为空,表示是否到叶子节点 if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; //插入元素,判断是否平衡,而且调整 root = balanceInsertion(root, x); break; } } } } //确保根节点就是第一个节点 moveRootToFront(tab, root); } /** * 红黑树转换为链表 */ final Node<K,V> untreeify(HashMap<K,V> map) { Node<K,V> hd = null, tl = null; for (Node<K,V> q = this; q != null; q = q.next) { Node<K,V> p = map.replacementNode(q, null); if (tl == null) hd = p; else tl.next = p; tl = p; } return hd; } /** * 插入一个节点 */ final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, int h, K k, V v) { Class<?> kc = null; boolean searched = false; TreeNode<K,V> root = (parent != null) ? root() : this; //从根据点开始,和当前搜索节点的hash比较 for (TreeNode<K,V> p = root;;) { int dir, ph; K pk; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; //hash和key都一致 else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) { if (!searched) { TreeNode<K,V> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { Node<K,V> xpn = xp.next; //新建节点 TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn); if (dir <= 0) xp.left = x; else xp.right = x; xp.next = x; x.parent = x.prev = xp; if (xpn != null) ((TreeNode<K,V>)xpn).prev = x; //插入元素,判断是否平衡,而且调整。确保根节点就是第一个节点 moveRootToFront(tab, balanceInsertion(root, x)); return null; } } } /** * Removes the given node, that must be present before this call. * This is messier than typical red-black deletion code because we * cannot swap the contents of an interior node with a leaf * successor that is pinned by "next" pointers that are accessible * independently during traversal. So instead we swap the tree * linkages. If the current tree appears to have too few nodes, * the bin is converted back to a plain bin. (The test triggers * somewhere between 2 and 6 nodes, depending on tree structure). */ final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab, boolean movable) { int n; if (tab == null || (n = tab.length) == 0) return; int index = (n - 1) & hash; TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl; TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev; if (pred == null) tab[index] = first = succ; else pred.next = succ; if (succ != null) succ.prev = pred; if (first == null) return; if (root.parent != null) root = root.root(); if (root == null || root.right == null || (rl = root.left) == null || rl.left == null) { tab[index] = first.untreeify(map); // too small return; } TreeNode<K,V> p = this, pl = left, pr = right, replacement; if (pl != null && pr != null) { TreeNode<K,V> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K,V> sr = s.right; TreeNode<K,V> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<K,V> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } if ((s.right = pr) != null) pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; if ((s.left = pl) != null) pl.parent = s; if ((s.parent = pp) == null) root = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { TreeNode<K,V> pp = replacement.parent = p.parent; if (pp == null) root = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement); if (replacement == p) { // detach TreeNode<K,V> pp = p.parent; p.parent = null; if (pp != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; } } if (movable) moveRootToFront(tab, r); } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR //左旋 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, TreeNode<K,V> p) { TreeNode<K,V> r, pp, rl; //以p为左旋支点,且p不为空,右儿子不为空 if (p != null && (r = p.right) != null) { //将p的右儿子r的左儿子rl变为p的右儿子 if ((rl = p.right = r.left) != null) rl.parent = p; //处理p、l和p父节点的关系 if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; //处理p和r的关系 r.left = p; p.parent = r; } return root; } //右旋 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, TreeNode<K,V> p) { TreeNode<K,V> l, pp, lr; //p:右旋支点,不为空,p的左儿子l不为空 if (p != null && (l = p.left) != null) { //将左儿子的右子树变为p的左子树 if ((lr = p.left = l.right) != null) lr.parent = p; //p的父节点变为l的父节点 if ((pp = l.parent = p.parent) == null) (root = l).red = false; //若是p为右儿子,则p的父节点的右儿子变为l,不然左儿子变为l else if (pp.right == p) pp.right = l; else pp.left = l; //p变为l的右儿子 l.right = p; p.parent = l; } return root; } static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, TreeNode<K,V> x) { //插入节点初始化为红色 x.red = true; //xp:父节点,xpp:祖父节点, xppl:祖父节点的左儿子,xppr:祖父节点的右儿子 //循环遍历 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { //插入的节点为根节点,节点颜色转换为黑色 if ((xp = x.parent) == null) { x.red = false; return x; } //当前节点的父为黑色节点或者父节点为根节点,直接返回 else if (!xp.red || (xpp = xp.parent) == null) return root; //祖父节点的左儿子是父节点 if (xp == (xppl = xpp.left)) { //S1:当前节点的父节点xp是红色,且当前节点的祖父节xpp点的另外一个子节点(xppl或者xppr)也是红色 if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { //S2:当前节点的父节点xp是红色,祖父节点的儿子节点(xppl或者xppr)是黑色,且当前节点x是其父节点xp的右孩子 if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } //S3:当前节点的父节点xp是红色,祖父节点的儿子节点(xppl或者xppr)是黑色,且当前节点是其父节点xp的左孩子 if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { //S1:当前节点的父节点xp是红色,且当前节点的祖父节xpp点的另外一个子节点(xppl或者xppr)也是红色 if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { //S2:当前节点的父节点xp是红色,祖父节点的儿子节点(xppl或者xppr)是黑色,且当前节点x是其父节点xp的右孩子 if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } //S3:当前节点的父节点xp是红色,祖父节点的儿子节点(xppl或者xppr)是黑色,且当前节点是其父节点xp的左孩子 if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x) { for (TreeNode<K,V> xp, xpl, xpr;;) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { TreeNode<K,V> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { TreeNode<K,V> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } }