以球员信息为例,player索引的player type包含5个字段,姓名,年龄,薪水,球队,场上位置。
index的mapping为:java
"mappings": { "player": { "properties": { "name": { "index": "not_analyzed", "type": "string" }, "age": { "type": "integer" }, "salary": { "type": "integer" }, "team": { "index": "not_analyzed", "type": "string" }, "position": { "index": "not_analyzed", "type": "string" } }, "_all": { "enabled": false } } }
索引中的所有数据:
api
首先,初始化Builder:app
SearchRequestBuilder sbuilder = client.prepareSearch("player").setTypes("player");
接下来举例说明各类聚合操做的实现方法,由于在es的api中,多字段上的聚合操做须要用到子聚合(subAggregation),初学者可能找不到方法(网上资料比较少,笔者在这个问题上折腾了两天,最后度了源码才完全搞清楚T_T),后边会特地说明多字段聚合的实现方法。另外,聚合后的排序也会单独说明。函数
例如要计算每一个球队的球员数,若是使用SQL语句,应表达以下:ui
select team, count(*) as player_count from player group by team;
ES的java api:spa
TermsBuilder teamAgg= AggregationBuilders.terms("player_count ").field("team"); sbuilder.addAggregation(teamAgg); SearchResponse response = sbuilder.execute().actionGet();
例如要计算每一个球队每一个位置的球员数,若是使用SQL语句,应表达以下:code
select team, position, count(*) as pos_count from player group by team, position;
ES的java api:xml
TermsBuilder teamAgg= AggregationBuilders.terms("player_count ").field("team"); TermsBuilder posAgg= AggregationBuilders.terms("pos_count").field("position"); sbuilder.addAggregation(teamAgg.subAggregation(posAgg)); SearchResponse response = sbuilder.execute().actionGet();
例如要计算每一个球队年龄最大/最小/总/平均的球员年龄,若是使用SQL语句,应表达以下:blog
select team, max(age) as max_age from player group by team;
ES的java api:排序
1 2 3 4 |
|
例如要计算每一个球队球员的平均年龄,同时又要计算总年薪,若是使用SQL语句,应表达以下:
select team, avg(age)as avg_age, sum(salary) as total_salary from player group by team;
ES的java api:
1 2 3 4 5 6 |
|
例如要计算每一个球队总年薪,并按照总年薪倒序排列,若是使用SQL语句,应表达以下:
select team, sum(salary) as total_salary from player group by team order by total_salary desc;
ES的java api:
1 2 3 4 |
|
须要特别注意的是,排序是在TermAggregation处执行的,Order.aggregation函数的第一个参数是aggregation的名字,第二个参数是boolean型,true表示正序,false表示倒序。
默认状况下,search执行后,仅返回10条聚合结果,若是想反悔更多的结果,须要在构建TermsBuilder 时指定size:
TermsBuilder teamAgg= AggregationBuilders.terms("team").size(15);
获得response后:
Map<String, Aggregation> aggMap = response.getAggregations().asMap(); StringTerms teamAgg= (StringTerms) aggMap.get("keywordAgg"); Iterator<Bucket> teamBucketIt = teamAgg.getBuckets().iterator(); while (teamBucketIt .hasNext()) { Bucket buck = teamBucketIt .next(); //球队名 String team = buck.getKey(); //记录数 long count = buck.getDocCount(); //获得全部子聚合 Map subaggmap = buck.getAggregations().asMap(); //avg值获取方法 double avg_age= ((InternalAvg) subaggmap.get("avg_age")).getValue(); //sum值获取方法 double total_salary = ((InternalSum) subaggmap.get("total_salary")).getValue(); //... //max/min以此类推 }
综上,聚合操做主要是调用了SearchRequestBuilder的addAggregation方法,一般是传入一个TermsBuilder,子聚合调用TermsBuilder的subAggregation方法,能够添加的子聚合有TermsBuilder、SumBuilder、AvgBuilder、MaxBuilder、MinBuilder等常见的聚合操做。 从实现上来说,SearchRequestBuilder在内部保持了一个私有的 SearchSourceBuilder实例, SearchSourceBuilder内部包含一个List<AbstractAggregationBuilder>,每次调用addAggregation时会调用 SearchSourceBuilder实例,添加一个AggregationBuilder。 一样的,TermsBuilder也在内部保持了一个List<AbstractAggregationBuilder>,调用addAggregation方法(来自父类addAggregation)时会添加一个AggregationBuilder。有兴趣的读者也能够阅读源码的实现。