【翻译】Sklearn 与 TensorFlow 机器学习实用指南 —— 第11章 训练深层神经网络(下) ...

训练稀疏模型 所有刚刚提出的优化算法都会产生密集的模型,这意味着大多数参数都是非零的。 如果你在运行时需要一个非常快速的模型,或者如果你需要它占用较少的内存,你可能更喜欢用一个稀疏模型来代替。 实现这一点的一个微不足道的方法是像平常一样训练模型,然后摆脱微小的权重(将它们设置为 0)。 另一个选择是在训练过程中应用强 l1 正则化,因为它会推动优化器尽可能多地消除权重(如第 4 章关于 Lasso
相关文章
相关标签/搜索