论文笔记:Burst Denoising with Kernel Prediction Networks

Introduction 这是UC Berkeley与Google Research于CVPR2018发表的一篇多图像去噪论文。其提出了一种CNN网络结构可以预测空间变化的核(kernel),利用得到的每个位置的Kernel对图像进行局部配准和降噪。文章基于真实噪声生成模型对ground truth图像加噪声和偏移,合成训练数据,并利用退火损失函数来引导优化过程,避免陷入局部最小值。 该文章的主要
相关文章
相关标签/搜索