利用Python进行数据分析(10) pandas基础: 处理缺失数据

数据不完整在数据分析的过程中很常见。 pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据。 pandas使用isnull()和notnull()函数来判断缺失情况。 对于缺失数据一般处理方法为滤掉或者填充。 滤除缺失数据:dropna()函数 对于一个Series,dropna()函数返回一个包含非空数据和索引值的Series,例如: 对于DataFrame,dropna()函数同样会丢
相关文章
相关标签/搜索