JavaShuo
栏目
标签
行人属性--HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis
时间 2021-01-12
原文
原文链接
HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis ICCV2017 https://github.com/xh-liu/HydraPlus-Net 本文首次将 attention idea 应用到 行人属性分析上来。 行人分析的难度还是比较大,因为不同场合分析的侧重点有所不同,有时需要侧重局部信息,有时需要侧重全局信息。S
>>阅读原文<<
相关文章
1.
行人属性识别:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
2.
行人属性“Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca”
3.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
4.
Attribute-Recognition行人属性识别资料
5.
行人属性“Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios”
6.
「Medical Image Analysis」Note on Deep Attentional Features
7.
Pushing the Limits of Deep CNNs for Pedestrian Detection
8.
Attention-Based Pedestrian Attribute Analysis
9.
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection
10.
Learning Deep Features for Discriminative Localization
更多相关文章...
•
Lua for 循环
-
Lua 教程
•
Swift for 循环
-
Swift 教程
•
JDK13 GA发布:5大特性解读
•
再有人问你分布式事务,把这篇扔给他
相关标签/搜索
analysis
pedestrian
features
attentive
deep
属性
行性
行人
人性
PHP 7 新特性
Hibernate教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
说说Python中的垃圾回收机制?
2.
蚂蚁金服面试分享,阿里的offer真的不难,3位朋友全部offer
3.
Spring Boot (三十一)——自定义欢迎页及favicon
4.
Spring Boot核心架构
5.
IDEA创建maven web工程
6.
在IDEA中利用maven创建java项目和web项目
7.
myeclipse新导入项目基本配置
8.
zkdash的安装和配置
9.
什么情况下会导致Python内存溢出?要如何处理?
10.
CentoOS7下vim输入中文
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
行人属性识别:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
2.
行人属性“Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca”
3.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
4.
Attribute-Recognition行人属性识别资料
5.
行人属性“Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios”
6.
「Medical Image Analysis」Note on Deep Attentional Features
7.
Pushing the Limits of Deep CNNs for Pedestrian Detection
8.
Attention-Based Pedestrian Attribute Analysis
9.
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection
10.
Learning Deep Features for Discriminative Localization
>>更多相关文章<<