http://flume.apache.org/FlumeUserGuide.html#avro-sourcehtml
经过一个通道未来源和接收器连接。须要列出源,接收器和通道,为给定的代理,而后指向源和接收器及通道。一个源的实例能够指定多个通道,但只能指定一个接收器实例。格式以下:java
# list the sources, sinks and channels for the agent <Agent>.sources = <Source> <Agent>.sinks = <Sink> <Agent>.channels = <Channel1> <Channel2> # set channel for source <Agent>.sources.<Source>.channels = <Channel1> <Channel2> ... # set channel for sink <Agent>.sinks.<Sink>.channel = <Channel1>
实例解析:一个代理名为agent_foo,外部经过avro客户端,而且发送数据经过内存通道给hdfs。在配置文件foo.config的可能看起来像这样:node
# list the sources, sinks and channels for the agent agent_foo.sources = avro-appserver-src-1 agent_foo.sinks = hdfs-sink-1 agent_foo.channels = mem-channel-1 # set channel for source agent_foo.sources.avro-appserver-src-1.channels = mem-channel-1 # set channel for sink agent_foo.sinks.hdfs-sink-1.channel = mem-channel-1
案例说明:这将使事件流从avro-appserver-src-1到hdfs-sink-1经过内存通道mem-channel-1。当代理开始foo.config做为其配置文件,它会实例化流。web
配置单个组件apache
定义流以后,须要设置每一个源,接收器和通道的属性。能够分别设定组件的属性值。缓存
# properties for sources <Agent>.sources.<Source>.<someProperty> = <someValue> # properties for channels <Agent>.channel.<Channel>.<someProperty> = <someValue> # properties for sinks <Agent>.sources.<Sink>.<someProperty> = <someValue>
“type”属性必须为每一个组件设置,以了解它须要什么样的对象。每一个源,接收器和通道类型有其本身的一套,它所需的性能,以实现预期的功能。全部这些,必须根据须要设置。在前面的例子中,从hdfs-sink-1中的流到HDFS,经过内存通道mem-channel-1的avro-appserver-src-1源。下面是 一个例子,显示了这些组件的配置。bash
agent_foo.sources = avro-AppSrv-source agent_foo.sinks = hdfs-Cluster1-sink agent_foo.channels = mem-channel-1 # set channel for sources, sinks # properties of avro-AppSrv-source agent_foo.sources.avro-AppSrv-source.type = avro agent_foo.sources.avro-AppSrv-source.bind = localhost agent_foo.sources.avro-AppSrv-source.port = 10000 # properties of mem-channel-1 agent_foo.channels.mem-channel-1.type = memory agent_foo.channels.mem-channel-1.capacity = 1000 agent_foo.channels.mem-channel-1.transactionCapacity = 100 # properties of hdfs-Cluster1-sink agent_foo.sinks.hdfs-Cluster1-sink.type = hdfs agent_foo.sinks.hdfs-Cluster1-sink.hdfs.path = hdfs://namenode/flume/webdata #...
经过flume来监控一个目录,当目录中有新文件时,将文件内容输出到控制台。服务器
建立一个test01.conf的文件:app
#配置一个agent,agent的名称能够自定义(如a1) #指定agent的sources(如s1)、sinks(如k1)、channels(如c1) #分别指定agent的sources,sinks,channels的名称 名称能够自定义 a1.sources = s1 a1.sinks = k1 a1.channels = c1 #描述source #配置目录scource a1.sources.s1.type = spooldir a1.sources.s1.spoolDir = /opt/flume/logs a1.sources.s1.fileHeader= true a1.sources.s1.channels =c1 #配置sink a1.sinks.k1.type = logger a1.sinks.k1.channel = c1 #配置channel(内存作缓存) a1.channels.c1.type = memory
启动命令curl
./bin/flume-ng agent --conf conf --conf-file ./conf/test1.conf --name a1 -Dflume.root.logger=INFO,console
测试 Flume
从新打开一个终端,咱们将123.log移动到logs目录
$ cp test.log logs/
原始的Flume终端将在日志消息中输出事件:
2018-11-03 03:54:54,207 (pool-3-thread-1) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.readEvents(ReliableSpoolingFileEventReader.java:324)] Last read took us just up to a file boundary. Rolling to the next file, if there is one. 2018-11-03 03:54:54,207 (pool-3-thread-1) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.rollCurrentFile(ReliableSpoolingFileEventReader.java:433)] Preparing to move file /opt/flume/logs/test.log to /opt/flume/logs/test.log.COMPLETED 2.6 NetCat Source
案例2:实时模拟从web服务器中读取数据到hdfs中
此处使用 exec source 详细参考 上一节里面的 2.3 Exec Source 介绍
单个Flume代理能够包含几个独立的流。你能够在一个配置文件中列出多个源,接收器和通道。这些组件能够链接造成多个流。
# list the sources, sinks and channels for the agent <Agent>.sources = <Source> <Agent>.sinks = <Sink> <Agent>.channels = <Channel1> <Channel2> # set channel for source <Agent>.sources.<Source>.channels = <Channel1> <Channel2> ... # set channel for sink <Agent>.sinks.<Sink>.channel = <Channel1>
能够链接源和接收器到其相应的通道,设置两个不一样的流。例如,若是须要设置一个agent_foo代理两个流,一个从外部Avro客户端到HDFS,另一个是tail的输出到Avro接收器,而后在这里是作一个配置。
# list the sources, sinks and channels in the agent agent_foo.sources = avro-AppSrv-source1 exec-tail-source2 agent_foo.sinks = hdfs-Cluster1-sink1 avro-forward-sink2 agent_foo.channels = mem-channel-1 file-channel-2 # flow #1 configuration agent_foo.sources.avro-AppSrv-source1.channels = mem-channel-1 agent_foo.sinks.hdfs-Cluster1-sink1.channel = mem-channel-1 # flow #2 configuration agent_foo.sources.exec-tail-source2.channels = file-channel-2 agent_foo.sinks.avro-forward-sink2.channel = file-channel-2
设置一个多层的流,须要有一个指向下一跳avro源的第一跳的avro 接收器。这将致使第一Flume代理转发事件到下一个Flume代理。例如,若是按期发送的文件,每一个事件(1文件)AVRO客户端使用本地Flume 代理,那么这个当地的代理能够转发到另外一个有存储的代理。
配置以下:
Weblog agent config:
# list sources, sinks and channels in the agent agent_foo.sources = avro-AppSrv-source agent_foo.sinks = avro-forward-sink agent_foo.channels = file-channel # define the flow agent_foo.sources.avro-AppSrv-source.channels = file-channel agent_foo.sinks.avro-forward-sink.channel = file-channel # avro sink properties agent_foo.sinks.avro-forward-sink.type = avro agent_foo.sinks.avro-forward-sink.hostname = 10.1.1.100 agent_foo.sinks.avro-forward-sink.port = 10000 # configure other pieces #...
HDFS agent config:
# list sources, sinks and channels in the agent agent_foo.sources = avro-collection-source agent_foo.sinks = hdfs-sink agent_foo.channels = mem-channel # define the flow agent_foo.sources.avro-collection-source.channels = mem-channel agent_foo.sinks.hdfs-sink.channel = mem-channel # avro source properties agent_foo.sources.avro-collection-source.type = avro agent_foo.sources.avro-collection-source.bind = 10.1.1.100 agent_foo.sources.avro-collection-source.port = 10000 # configure other pieces #...
这里链接从weblog-agent的avro-forward-sink 到hdfs-agent的avro-collection-source收集源。最终结果从外部源的appserver最终存储在HDFS的事件。
建立一个case_avro.conf的文件:
a1.sources = s1 a1.sinks = k1 a1.channels = c1 a1.sources.s1.type = avro a1.sources.s1.channels = c1 a1.sources.s1.bind = localhost a1.sources.s1.port = 22222 a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.sinks.k1.type = logger a1.sinks.k1.channel = c1
建立一个case_avro_sink.conf的文件:
a2.sources = s1 a2.sinks = k1 a2.channels = c1 a2.sources.s1.type = syslogtcp a2.sources.s1.channels = c1 a2.sources.s1.host = 192.168.123.102 a2.sources.s1.port = 33333 a2.channels.c1.type = memory a2.channels.c1.capacity = 1000 a2.channels.c1.transactionCapacity = 100 a2.sinks.k1.type = avro a2.sinks.k1.hostname = 192.168.123.102 a2.sinks.k1.port = 22222 a2.sinks.k1.channel = c1
说明:case_avro_sink.conf是前面的Agent,case_avro.conf是后面的Agent
先启动Avro的Source,监听端口
$ ./bin/flume-ng agent --conf conf --conf-file ./conf/case_avro.conf --name a1 -Dflume.root.logger=DEBUG,console -Dorg.apache.flume.log.printconfig=true -Dorg.apache.flume.log.rawdata=true
再启动Avro的Sink
$ ./bin/flume-ng agent --conf conf --conf-file ./conf/case_avro_sink.conf --name a2 -Dflume.root.logger=DEBUG,console -Dorg.apache.flume.log.printconfig=true -Dorg.apache.flume.log.rawdata=true
能够看到已经创建链接
在Avro Sink上生成测试log
$ echo "hello flume avro sink" | nc 192.168.1.102 33333
查看结果:
Flume支持扇出流从一个源到多个通道。有两种模式的扇出,复制和复用。在复制流的事件被发送到全部的配置通道。在复用的状况下,事件被发送到合格的渠 道只有一个子集。扇出流,须要指定源和扇出通道的规则。这是经过添加一个通道“选择”,能够复制或复用。再进一步指定选择的规则,若是它是一个多路。若是你 不指定一个选择,则默认状况下它复制。
# list the sources, sinks and channels for the agent <Agent>.sources = <Source> <Agent>.sinks = <Sink> <Agent>.channels = <Channel1> <Channel2> # set channel for source <Agent>.sources.<Source>.channels = <Channel1> <Channel2> ... # set channel for sink <Agent>.sinks.<Sink>.channel = <Channel1>
复用的选择集的属性进一步分叉。这须要指定一个事件属性映射到一组通道。选择配置属性中的每一个事件头检查。若是指定的值相匹配,那么该事件被发送到全部的通道映射到该值。若是没有匹配,那么该事件被发送到设置为默认配置的通道。
# Mapping for multiplexing selector <Agent>.sources.<Source1>.selector.type = multiplexing <Agent>.sources.<Source1>.selector.header = <someHeader> <Agent>.sources.<Source1>.selector.mapping.<Value1> = <Channel1> <Agent>.sources.<Source1>.selector.mapping.<Value2> = <Channel1> <Channel2> <Agent>.sources.<Source1>.selector.mapping.<Value3> = <Channel2> #... <Agent>.sources.<Source1>.selector.default = <Channel2>
映射容许每一个值通道能够重叠。默认值能够包含任意数量的通道。下面的示例中有一个单一的流复用两条路径。代理有一个单一的avro源和链接道两个接收器的两个通道。
# list the sources, sinks and channels in the agent agent_foo.sources = avro-AppSrv-source1 agent_foo.sinks = hdfs-Cluster1-sink1 avro-forward-sink2 agent_foo.channels = mem-channel-1 file-channel-2 # set channels for source agent_foo.sources.avro-AppSrv-source1.channels = mem-channel-1 file-channel-2 # set channel for sinks agent_foo.sinks.hdfs-Cluster1-sink1.channel = mem-channel-1 agent_foo.sinks.avro-forward-sink2.channel = file-channel-2 # channel selector configuration agent_foo.sources.avro-AppSrv-source1.selector.type = multiplexing agent_foo.sources.avro-AppSrv-source1.selector.header = State agent_foo.sources.avro-AppSrv-source1.selector.mapping.CA = mem-channel-1 agent_foo.sources.avro-AppSrv-source1.selector.mapping.AZ = file-channel-2 agent_foo.sources.avro-AppSrv-source1.selector.mapping.NY = mem-channel-1 file-channel-2 agent_foo.sources.avro-AppSrv-source1.selector.default = mem-channel-1
“State”做为Header的选择检查。若是值是“CA”,而后将其发送到mem-channel-1,若是它的“AZ”的,那么jdbc- channel-2,若是它的“NY”那么发到这两个。若是“State”头未设置或不匹配的任何三个,而后去默认的mem-channel-1通道。
case_replicate_sink.conf
a1.sources = s1 a1.sinks = k1 k2 a1.channels = c1 c2 a1.sources.s1.type = syslogtcp a1.sources.s1.channels = c1 c2 a1.sources.s1.host = 192.168.1.102 a1.sources.s1.port = 6666 a1.sources.s1.selector.type = replicating a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 a1.sinks.k1.type = avro a1.sinks.k1.hostname = 192.168.1.102 a1.sinks.k1.port = 7777 a1.sinks.k1.channel = c1 a1.sinks.k1.type = avro a1.sinks.k1.hostname = 192.168.1.102 a1.sinks.k1.port = 7777 a1.sinks.k1.channel = c2
case_replicate_s1.conf
a2.sources = s1 a2.sinks = k1 a2.channels = c1 a2.sources.s1.type = avro a2.sources.s1.channels = c1 a2.sources.s1.host = 192.168.1.102 a2.sources.s1.port = 7777 a2.channels.c1.type = memory a2.channels.c1.capacity = 1000 a2.channels.c1.transactionCapacity = 100 a2.sinks.k1.type = logger a2.sinks.k1.channel = c1
case_replicate_s2.conf
a3.sources = s1 a3.sinks = k1 a3.channels = c1 a3.sources.s1.type = avro a3.sources.s1.channels = c1 a3.sources.s1.host = 192.168.1.102 a3.sources.s1.port = 7777 a3.channels.c1.type = memory a3.channels.c1.capacity = 1000 a3.channels.c1.transactionCapacity = 100 a3.sinks.k1.type = logger a3.sinks.k1.channel = c1
先启动Avro的Source,监听端口
$ ./bin/flume-ng agent --conf conf --conf-file ./conf/case_replicate_s1.conf --name a2 -Dflume.root.logger=DEBUG,console -Dorg.apache.flume.log.printconfig=true -Dorg.apache.flume.log.rawdata=true
$ ./bin/flume-ng agent --conf conf --conf-file ./conf/case_replicate_s2.conf --name a3 -Dflume.root.logger=DEBUG,console -Dorg.apache.flume.log.printconfig=true -Dorg.apache.flume.log.rawdata=true
再启动Avro的Sink
$ ./bin/flume-ng agent --conf conf --conf-file ./confcase_replicate_sink.conf --name a1 -Dflume.root.logger=DEBUG,console -Dorg.apache.flume.log.printconfig=true -Dorg.apache.flume.log.rawdata=true
生成测试log
$ echo "hello via channel selector" | nc 192.168.1.102 6666
case_multi_sink.conf
#2个channel和2个sink的配置文件 a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1.type = org.apache.flume.source.http.HTTPSource a1.sources.r1.port = 5140 a1.sources.r1.host = 0.0.0.0 a1.sources.r1.selector.type = multiplexing a1.sources.r1.channels = c1 c2 a1.sources.r1.selector.header = state a1.sources.r1.selector.mapping.CZ = c1 a1.sources.r1.selector.mapping.US = c2 a1.sources.r1.selector.default = c1 # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.channel = c1 a1.sinks.k1.hostname = 192.168.1.102 a1.sinks.k1.port = 4545 a1.sinks.k2.type = avro a1.sinks.k2.channel = c2 a1.sinks.k2.hostname = 192.168.1.102 a1.sinks.k2.port = 4545 # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100
case_ multi _s1.conf
# Name the components on this agent a2.sources = r1 a2.sinks = k1 a2.channels = c1 # Describe/configure the source a2.sources.r1.type = avro a2.sources.r1.channels = c1 a2.sources.r1.bind = 192.168.1.102 a2.sources.r1.port = 4545 # Describe the sink a2.sinks.k1.type = logger a2.sinks.k1.channel = c1 # Use a channel which buffers events in memory a2.channels.c1.type = memory a2.channels.c1.capacity = 1000 a2.channels.c1.transactionCapacity = 100
case_ multi _s2.conf
# Name the components on this agent a3.sources = r1 a3.sinks = k1 a3.channels = c1 # Describe/configure the source a3.sources.r1.type = avro a3.sources.r1.channels = c1 a3.sources.r1.bind = 192.168.1.102 a3.sources.r1.port = 4545 # Describe the sink a3.sinks.k1.type = logger a3.sinks.k1.channel = c1 # Use a channel which buffers events in memory a3.channels.c1.type = memory a3.channels.c1.capacity = 1000 a3.channels.c1.transactionCapacity = 100
先启动Avro的Source,监听端口
$ ./bin/flume-ng agent -c . -f ./conf/case_ multi _s1.conf -n a2 -Dflume.root.logger=INFO,console $ ./bin/flume-ng agent -c . -f ./conf/case_ multi _s2.conf -n a3 -Dflume.root.logger=INFO,console
再启动Avro的Sink
$ ./bin/lume-ng agent -c . -f ./conf/case_multi_sink.conf -n a1 -Dflume.root.logger=INFO,console
根据配置文件生成测试的header 为state的POST请求
$ curl -X POST -d '[{ "headers" :{"state" : "CZ"},"body" : "TEST1"}]' http://localhost:5140 $ curl -X POST -d '[{ "headers" :{"state" : "US"},"body" : "TEST2"}]' http://localhost:5140 $ curl -X POST -d '[{ "headers" :{"state" : "SH"},"body" : "TEST3"}]' http://localhost:5140