前言
这篇文章里讲到了 NioEndpint 的启动过程当中建立了多个 Poller 对象,并启动了 Poller 线程。在上篇文章中介绍了 Acceptor 的 run 方法,其中讲到了 Acceptor 的工做就是接受客户端的链接并转交给 Poller 线程处理,本文将分析 Poller 和 PollerEvent。Poller 和 PollerEvent 都是 NioEndpoint 的内部类。编程
1. PollerEvent#run
Acceptor 线程将接受的链接封装成 PollerEvent 对象,并加入到一个队列里等待 Poller 线程的执行。PollerEvent 实现了 Runnable 接口,所以 run 方法是其关键方法。segmentfault
private NioChannel socket; private NioSocketWrapper socketWrapper; @Override public void run() { if (interestOps == OP_REGISTER) { try { socket.getIOChannel().register( socket.getPoller().getSelector(), SelectionKey.OP_READ, socketWrapper); } catch (Exception x) { log.error(sm.getString("endpoint.nio.registerFail"), x); } } else { final SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector()); try { if (key == null) { // The key was cancelled (e.g. due to socket closure) // and removed from the selector while it was being // processed. Count down the connections at this point // since it won't have been counted down when the socket // closed. socket.socketWrapper.getEndpoint().countDownConnection(); ((NioSocketWrapper) socket.socketWrapper).closed = true; } else { final NioSocketWrapper socketWrapper = (NioSocketWrapper) key.attachment(); if (socketWrapper != null) { //we are registering the key to start with, reset the fairness counter. int ops = key.interestOps() | interestOps; socketWrapper.interestOps(ops); key.interestOps(ops); } else { socket.getPoller().cancelledKey(key); } } } catch (CancelledKeyException ckx) { try { socket.getPoller().cancelledKey(key); } catch (Exception ignore) {} } } }
interestOps 是在构造方法里传入的。PollerEvent 的构造方法在两处用到,一处是 Poller#register 方法里,也就是上篇文章里提到的,另外一处是在 Poller#add 方法里,这个 add 方法的调用点有多处,传入的 interestOps 的值是 SelectionKey.OP_WRITE 或者 SelectionKey.OP_READ。
if 语句块里,socket 是在构造方法里传入的 NioChannel 对象,缓存
protected SocketChannel sc = null; public SocketChannel getIOChannel() { return sc; }
NioChannel#getIOChannel 返回的是 SocketChannel 对象,这个对象是在建立 NioChannel 对象是传入的,是 Acceptor 线程里调用 endpoint.serverSocketAccept() 获取到的对象。
socket.getPoller().getSelector() 是获取 Poller 的 Selector 类型的对象。app
private Selector selector; public Poller() throws IOException { this.selector = Selector.open(); } public Selector getSelector() { return selector;}
能够看出,这个 selector 是在 Poller 构造方法里初始化的,一个 Poller 里有一个 Selector 对象。
if 语句块里,是将 SocketChannel 对象注册到 Poller 内部的 Selector 对象,并附加了一个 NioSocketWrapper 对象。注册的感兴趣的事件是 SelectionKey.OP_READ,也就是说,这个 Selector 对象会监听这个 SocketChannel 的读事件。socket
else 语句块的逻辑也不复杂,就是将传入的 interestOps 操做(SelectionKey.OP_WRITE 或者 SelectionKey.OP_READ)附加到 SocketChannel 关联的 SelectionKey 里,或者取消掉关联的 SelectionKey。ide
2. Poller#run
Poller 实现了 Runnable,它的 run 方法是关键。oop
/** * The background thread that adds sockets to the Poller, checks the * poller for triggered events and hands the associated socket off to an * appropriate processor as events occur. */ @Override public void run() { // Loop until destroy() is called while (true) { boolean hasEvents = false; try { if (!close) { hasEvents = events(); if (wakeupCounter.getAndSet(-1) > 0) { //if we are here, means we have other stuff to do //do a non blocking select keyCount = selector.selectNow(); } else { keyCount = selector.select(selectorTimeout); } wakeupCounter.set(0); } if (close) { events(); timeout(0, false); try { selector.close(); } catch (IOException ioe) { log.error(sm.getString("endpoint.nio.selectorCloseFail"), ioe); } break; } } catch (Throwable x) { ExceptionUtils.handleThrowable(x); log.error(sm.getString("endpoint.nio.selectorLoopError"), x); continue; } //either we timed out or we woke up, process events first if ( keyCount == 0 ) hasEvents = (hasEvents | events()); Iterator<SelectionKey> iterator = keyCount > 0 ? selector.selectedKeys().iterator() : null; // Walk through the collection of ready keys and dispatch // any active event. while (iterator != null && iterator.hasNext()) { SelectionKey sk = iterator.next(); NioSocketWrapper attachment = (NioSocketWrapper)sk.attachment(); // Attachment may be null if another thread has called // cancelledKey() if (attachment == null) { iterator.remove(); } else { iterator.remove(); processKey(sk, attachment); } }//while //process timeouts timeout(keyCount,hasEvents); }//while getStopLatch().countDown(); }
run 方法里先执行 if (!close) 语句块。先调用了 events 方法,ui
/** * Processes events in the event queue of the Poller. * * @return <code>true</code> if some events were processed, * <code>false</code> if queue was empty */ public boolean events() { boolean result = false; PollerEvent pe = null; for (int i = 0, size = events.size(); i < size && (pe = events.poll()) != null; i++ ) { result = true; try { pe.run(); pe.reset(); if (running && !paused) { eventCache.push(pe); } } catch ( Throwable x ) { log.error(sm.getString("endpoint.nio.pollerEventError"), x); } } return result; }
events() 方法就是执行了 events 这个队列里的 PollerEvent 的 run 方法,而后把 PollerEvent 对象放在 eventCache 里以方便复用。PollerEvent#run方法在上面讲过了。
以后根据 wakeupCounter 的值判断是用 selector.selectNow() 仍是 selector.select(selectorTimeout)。wakeupCounter 值在 Poller#addEvent 里自增1的。
而后就进入 if (close) 语句块,也是调用 events() 方法,而后调用 timeout(0, false) 和 selector.close() 方法。this
后面就是调用 Selector.selectedKeys() 获取监听到的 SelectionKey 集合并逐个调用 processKey(sk, attachment)处理,这是 nio 编程里的常规操做。
SelectionKey 的 attachment 是 NioSocketWrapper 对象,这个对象是在构造 PollerEvent 传入的,在 Poller#register 方法里。spa
2.1. Poller#processKey
processKey 方法就是处理 SelectionKey 的关键了。
protected void processKey(SelectionKey sk, NioSocketWrapper attachment) { try { if ( close ) { cancelledKey(sk); } else if ( sk.isValid() && attachment != null ) { if (sk.isReadable() || sk.isWritable() ) { if ( attachment.getSendfileData() != null ) { processSendfile(sk,attachment, false); } else { unreg(sk, attachment, sk.readyOps()); boolean closeSocket = false; // Read goes before write if (sk.isReadable()) { if (!processSocket(attachment, SocketEvent.OPEN_READ, true)) { closeSocket = true; } } if (!closeSocket && sk.isWritable()) { if (!processSocket(attachment, SocketEvent.OPEN_WRITE, true)) { closeSocket = true; } } if (closeSocket) { cancelledKey(sk); } } } } else { //invalid key cancelledKey(sk); } } catch ( CancelledKeyException ckx ) { cancelledKey(sk); } catch (Throwable t) { ExceptionUtils.handleThrowable(t); log.error(sm.getString("endpoint.nio.keyProcessingError"), t); } }
能够看出,attachment.getSendfileData() 不为 null 的话就调用 processSendfile 方法处理。不然调用 processKey 方法处理。
processSendfile 就是调用 FileChannel#transferTo 方法来发送数据的。这个方法不是重点,这里就不详细解析了。
processKey 方法是调用 processSocket(SocketWrapperBase<S> socketWrapper, SocketEvent event, boolean dispatch) 方法分别处理 OP_READ 和 OP_WRITE 事件,传入的第二个参数分别是 SocketEvent.OPEN_READ 和 SocketEvent.OPEN_WRITE,第三个参数是 true。dispatch 的 true 表示是用另外的线程处理,false 是在 Poller 线程处理。
这个 processSocket 是 AbstractEndpoint 里的方法。
2.2. AbstractEndpoint#processSocket
/** * External Executor based thread pool. */ private Executor executor = null; public Executor getExecutor() { return executor; } /** * Process the given SocketWrapper with the given status. Used to trigger * processing as if the Poller (for those endpoints that have one) * selected the socket. * * @param socketWrapper The socket wrapper to process * @param event The socket event to be processed * @param dispatch Should the processing be performed on a new * container thread * * @return if processing was triggered successfully */ public boolean processSocket(SocketWrapperBase<S> socketWrapper, SocketEvent event, boolean dispatch) { try { if (socketWrapper == null) { return false; } SocketProcessorBase<S> sc = processorCache.pop(); if (sc == null) { sc = createSocketProcessor(socketWrapper, event); } else { sc.reset(socketWrapper, event); } Executor executor = getExecutor(); if (dispatch && executor != null) { executor.execute(sc); } else { sc.run(); } } catch (RejectedExecutionException ree) { getLog().warn(sm.getString("endpoint.executor.fail", socketWrapper) , ree); return false; } catch (Throwable t) { ExceptionUtils.handleThrowable(t); // This means we got an OOM or similar creating a thread, or that // the pool and its queue are full getLog().error(sm.getString("endpoint.process.fail"), t); return false; } return true; }
processSocket 方法先从 processorCache 的缓存池里获取一个 SocketProcessorBase 对象,processorCache 是在 NioEndpoint#startInternal 里初始化的。若是获取不到就调用 createSocketProcessor 方法建立一个。
建立SocketProcessorBase 对象时传入了 SocketWrapperBase(也就是 NioSocketWrapper 对象) 和 SocketEvent 对象。
createSocketProcessor 方法是一个abstract 的,其实如今 NioEndpoint 里。
@Override protected SocketProcessorBase<NioChannel> createSocketProcessor( SocketWrapperBase<NioChannel> socketWrapper, SocketEvent event) { return new SocketProcessor(socketWrapper, event); }
/** * This class is the equivalent of the Worker, but will simply use in an * external Executor thread pool. */ protected class SocketProcessor extends SocketProcessorBase<NioChannel>
NioEndpoint#createSocketProcessor 方法就是简单建立一个 SocketProcessor 对象。SocketProcessor 是 NioEndpoint 的内部类。
拿到 SocketProcessorBase 对象后,因为传入的 dispatch 为 true,因此会把这个 SocketProcessorBase 扔到 executor 里处理。SocketProcessorBase 实现了 Runnable。
executor 是在 AbstractEndpoint#createExecutor 方法里初始化的,createExecutor 在这篇文章里介绍过了,这里就不赘述了。
SocketProcessorBase 的内容以下。
public abstract class SocketProcessorBase<S> implements Runnable { protected SocketWrapperBase<S> socketWrapper; protected SocketEvent event; public SocketProcessorBase(SocketWrapperBase<S> socketWrapper, SocketEvent event) { reset(socketWrapper, event); } public void reset(SocketWrapperBase<S> socketWrapper, SocketEvent event) { Objects.requireNonNull(event); this.socketWrapper = socketWrapper; this.event = event; } @Override public final void run() { synchronized (socketWrapper) { // It is possible that processing may be triggered for read and // write at the same time. The sync above makes sure that processing // does not occur in parallel. The test below ensures that if the // first event to be processed results in the socket being closed, // the subsequent events are not processed. if (socketWrapper.isClosed()) { return; } doRun(); } } protected abstract void doRun(); }
SocketProcessorBase#run 方法很简单,就是调用抽象方法 doRun()。因此关键在于 SocketProcessor#doRun 方法。
2.3. SocketProcessor#doRun
@Override protected void doRun() { NioChannel socket = socketWrapper.getSocket(); SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector()); try { int handshake = -1; try { if (key != null) { if (socket.isHandshakeComplete()) { // No TLS handshaking required. Let the handler // process this socket / event combination. handshake = 0; } else if (event == SocketEvent.STOP || event == SocketEvent.DISCONNECT || event == SocketEvent.ERROR) { // Unable to complete the TLS handshake. Treat it as // if the handshake failed. handshake = -1; } else { handshake = socket.handshake(key.isReadable(), key.isWritable()); // The handshake process reads/writes from/to the // socket. status may therefore be OPEN_WRITE once // the handshake completes. However, the handshake // happens when the socket is opened so the status // must always be OPEN_READ after it completes. It // is OK to always set this as it is only used if // the handshake completes. event = SocketEvent.OPEN_READ; } } } catch (IOException x) { handshake = -1; if (log.isDebugEnabled()) log.debug("Error during SSL handshake",x); } catch (CancelledKeyException ckx) { handshake = -1; } if (handshake == 0) { SocketState state = SocketState.OPEN; // Process the request from this socket if (event == null) { state = getHandler().process(socketWrapper, SocketEvent.OPEN_READ); } else { state = getHandler().process(socketWrapper, event); } if (state == SocketState.CLOSED) { close(socket, key); } } else if (handshake == -1 ) { close(socket, key); } else if (handshake == SelectionKey.OP_READ){ socketWrapper.registerReadInterest(); } else if (handshake == SelectionKey.OP_WRITE){ socketWrapper.registerWriteInterest(); } } catch (CancelledKeyException cx) { socket.getPoller().cancelledKey(key); } catch (VirtualMachineError vme) { ExceptionUtils.handleThrowable(vme); } catch (Throwable t) { log.error(sm.getString("endpoint.processing.fail"), t); socket.getPoller().cancelledKey(key); } finally { socketWrapper = null; event = null; //return to cache if (running && !paused) { processorCache.push(this); } } }
doRun 方法里在开始的 if-else 语句块里决定 handshake 变量的值。
先调用 socket.isHandshakeComplete() 也就是 NioChannel#isHandshakeComplete
public boolean isHandshakeComplete() { return true; }
直接返回 true。理论上 else 的语句都不会执行了。其实 handshake 是 HTTPS 里的内容,NioChannel 不处理 handshake,可是在 NioChannel 的子类 SecureNioChannel 里会处理。SecureNioChannel 不是本文重点,这里就很少作介绍了。
因此在第一个 if-else 语句块了,handshake 的值就已经为 0 了。
接着是第二个 if-else 语句块,根据 handshake 的值作不一样的处理,若是 handshake 的值是 SelectionKey.OP_READ 或者 SelectionKey.OP_WRITE 的话,就调用 socketWrapper.registerReadInterest() 或者 socketWrapper.registerWriteInterest() 从新注册感兴趣事件。
@Override public void registerReadInterest() { getPoller().add(getSocket(), SelectionKey.OP_READ); } @Override public void registerWriteInterest() { getPoller().add(getSocket(), SelectionKey.OP_WRITE); }
这两个方法其实也就是调用 Poller#add 方法,
/** * Add specified socket and associated pool to the poller. The socket will * be added to a temporary array, and polled first after a maximum amount * of time equal to pollTime (in most cases, latency will be much lower, * however). * * @param socket to add to the poller * @param interestOps Operations for which to register this socket with * the Poller */ public void add(final NioChannel socket, final int interestOps) { PollerEvent r = eventCache.pop(); if ( r==null) r = new PollerEvent(socket,null,interestOps); else r.reset(socket,null,interestOps); addEvent(r); if (close) { NioEndpoint.NioSocketWrapper ka = (NioEndpoint.NioSocketWrapper)socket.getAttachment(); processSocket(ka, SocketEvent.STOP, false); } }
Poller#add 就是建立一个 PollerEvent 对象,并将这个对象加入的缓存队列里等待 Poller 线程的处理,PollerEvent#run 前面已经讲过了。
在 SecureNioChannel 里,handshake 可能会为根据 SecureNioChannel#handshake 的处理返回 SelectionKey.OP_READ 或者 SelectionKey.OP_WRITE。可是在 NioChannel 里 handshake 只会为 0。
第二个 if-else 语句块的 if 块里就是调用 getHandler().process(socketWrapper, event) 里处理。
而后获得一个 SocketState 对象 state,若是 state 的值为SocketState.CLOSED,则执行 close(socket, key) 方法。
getHandler() 是 AbstractEndpoint 里的方法
private Handler<S> handler = null; public Handler<S> getHandler() { return handler; }
Handler 带一个泛型 S,这个泛型就是 AbstractEndpoint<S,U> 里的 S。Handler 也是 AbstractEndpoint 的内部接口。
在 NioEndpoint 及其父类 AbstractJsseEndpoint 的声明里能够知道这个泛型 S 的具体类型就是 NioChannel。
这个 Handler 就是在 AbstractHttp11Protocol 的构造方法里 初始化的 ConnectionHandler 对象。这个在这篇文章里就讲到了,这里不在赘述了。
ConnectionHandler 会在下篇文章里介绍,这里就先很少讲了。
小结本文分析了 PollerEvent 和 Poller 的 run 方法,其中 PollerEvent#run 方法就是将 SocketChannel 的读或者写事件注册的 Poller 的 selector 里。Poller#run 方法就是先处理缓存队列里的 PollerEvent,而后处理 selector.selectKeys() 返回的 SelectionKey,也就是 SocketChannel 的读写事件。