为何要用Message Queue

摘录自博客:http://dataunion.org/9307.html?utm_source=tuicool&utm_medium=referral
html

 

为何要用Message Queue

  • 解耦
    在项目启动之初来预测未来项目会碰到什么需求,是极其困难的。消息队列在处理过程当中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这容许你独立的扩展或修改两边的处理过程,只要确保它们遵照一样的接口约束数据库

  • 冗余
    有些状况下,处理数据的过程会失败。除非数据被持久化,不然将形成丢失。消息队列把数据进行持久化直到它们已经被彻底处理,经过这一方式规避了数据丢失风险。在被许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除以前,须要你的处理过程明确的指出该消息已经被处理完毕,确保你的数据被安全的保存直到你使用完毕。安全

  • 扩展性
    由于消息队列解耦了你的处理过程,因此增大消息入队和处理的频率是很容易的;只要另外增长处理过程便可。不须要改变代码、不须要调节参数。扩展就像调大电力按钮同样简单。服务器

  • 灵活性 & 峰值处理能力
    在访问量剧增的状况下,应用仍然须要继续发挥做用,可是这样的突发流量并不常见;若是为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列可以使关键组件顶住突发的访问压力,而不会由于突发的超负荷的请求而彻底崩溃。负载均衡

  • 可恢复性
    当体系的一部分组件失效,不会影响到整个系统。消息队列下降了进程间的耦合度,因此即便一个处理消息的进程挂掉,加入队列中的消息仍然能够在系统恢复后被处理。而这种容许重试或者延后处理请求的能力一般是造就一个略感不便的用户和一个沮丧透顶的用户之间的区别。框架

  • 送达保证
    消息队列提供的冗余机制保证了消息能被实际的处理,只要一个进程读取了该队列便可。在此基础上,IronMQ提供了一个”只送达一次”保证。不管有多少进程在从队列中领取数据,每个消息只能被处理一次。这之因此成为可能,是由于获取一个消息只是”预约”了这个消息,暂时把它移出了队列。除非客户端明确的表示已经处理完了这个消息,不然这个消息会被放回队列中去,在一段可配置的时间以后可再次被处理。异步

  • 顺序保证
    在大多使用场景下,数据处理的顺序都很重要。消息队列原本就是排序的,而且能保证数据会按照特定的顺序来处理。IronMO保证消息经过FIFO(先进先出)的顺序来处理,所以消息在队列中的位置就是从队列中检索他们的位置。分布式

  • 缓冲
    在任何重要的系统中,都会有须要不一样的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列经过一个缓冲层来帮助任务最高效率的执行—写入队列的处理会尽量的快速,而不受从队列读的预备处理的约束。该缓冲有助于控制和优化数据流通过系统的速度。oop

  • 理解数据流
    在一个分布式系统里,要获得一个关于用户操做会用多长时间及其缘由的整体印象,是个巨大的挑战。消息系列经过消息被处理的频率,来方便的辅助肯定那些表现不佳的处理过程或领域,这些地方的数据流都不够优化。性能

  • 异步通讯
    不少时候,你不想也不须要当即处理消息。消息队列提供了异步处理机制,容许你把一个消息放入队列,但并不当即处理它。你想向队列中放入多少消息就放多少,而后在你乐意的时候再去处理它们。

经常使用Message Queue对比

  • RabbitMQ
    RabbitMQ是使用Erlang编写的一个开源的消息队列,自己支持不少的协议:AMQP,XMPP, SMTP, STOMP,也正因如此,它很是重量级,更适合于企业级的开发。同时实现了Broker构架,这意味着消息在发送给客户端时先在中心队列排队。对路由,负载均衡或者数据持久化都有很好的支持。

  • Redis
    Redis是一个基于Key-Value对的NoSQL数据库,开发维护很活跃。虽然它是一个Key-Value数据库存储系统,但它自己支持MQ功能,因此彻底能够当作一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操做,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不一样大小的数据。实验代表:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而若是数据大小超过了10K,Redis则慢的没法忍受;出队时,不管数据大小,Redis都表现出很是好的性能,而RabbitMQ的出队性能则远低于Redis。

  • ZeroMQ
    ZeroMQ号称最快的消息队列系统,尤为针对大吞吐量的需求场景。ZMQ可以实现RabbitMQ不擅长的高级/复杂的队列,可是开发人员须要本身组合多种技术框架,技术上的复杂度是对这MQ可以应用成功的挑战。ZeroMQ具备一个独特的非中间件的模式,你不须要安装和运行一个消息服务器或中间件,由于你的应用程序将扮演了这个服务角色。你只须要简单的引用ZeroMQ程序库,可使用NuGet安装,而后你就能够愉快的在应用程序之间发送消息了。可是ZeroMQ仅提供非持久性的队列,也就是说若是宕机,数据将会丢失。其中,Twitter的Storm 0.9.0之前的版本中默认使用ZeroMQ做为数据流的传输(Storm从0.9版本开始同时支持ZeroMQ和Netty做为传输模块)。

  • ActiveMQ
    ActiveMQ是Apache下的一个子项目。 相似于ZeroMQ,它可以以代理人和点对点的技术实现队列。同时相似于RabbitMQ,它少许代码就能够高效地实现高级应用场景。

  • Kafka/Jafka
    Kafka是Apache下的一个子项目,是一个高性能跨语言分布式发布/订阅消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具备如下特性:快速持久化,能够在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既能够达到10W/s的吞吐速率;彻底的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的同样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka经过Hadoop的并行加载机制来统一了在线和离线的消息处理。Apache Kafka相对于ActiveMQ是一个很是轻量级的消息系统,除了性能很是好以外,仍是一个工做良好的分布式系统。

Kafka解析

Terminology

    • Broker
      Kafka集群包含一个或多个服务器,这种服务器被称为broker
    • Topic
      每条发布到Kafka集群的消息都有一个类别,这个类别被称为topic。(物理上不一样topic的消息分开存储,逻辑上一个topic的消息虽然保存于一个或多个broker上但用户只需指定消息的topic便可生产或消费数据而没必要关心数据存于何处)
    • Partition
      parition是物理上的概念,每一个topic包含一个或多个partition,建立topic时可指定parition数量。每一个partition对应于一个文件夹,该文件夹下存储该partition的数据和索引文件
    • Producer
      负责发布消息到Kafka broker
    • Consumer消费消息。每一个consumer属于一个特定的consuer group(可为每一个consumer指定group name,若不指定group name则属于默认的group)。使用consumer high level API时,同一topic的一条消息只能被同一个consumer group内的一个consumer消费,但多个consumer group可同时消费这一消息。
相关文章
相关标签/搜索