卷积神经网络,主要分为哪四大块

卷积层是基于单词“卷积(Convolution)”而来,这是一种数学上的操作,它是对两个变量f*g进行操作产生第三个变量。它和互相关(cross-correlation)很像。卷积层的输入是一个m×m×r图像,其中m是图像的高度和宽度,r是通道的数量,例如,一个RGB图像的通道是3,即r=3。卷积层有k个滤波器【filters】(或者称之为核【kernel】),其大小是n×n×q,这里的n是比图像
相关文章
相关标签/搜索