JavaShuo
栏目
标签
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks
时间 2020-12-30
原文
原文链接
理解 Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks 一、摘要 1.提出了基于U-Net的卷积网络。 2.在BRaTS2015上实验。 二、Introduction 1.基于U-Net提出了2D全卷积网络。 2.使用dice loss 损失函数。 3
>>阅读原文<<
相关文章
1.
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks_2017
2.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
3.
Automatic skin lesion segmentation with fully convolutional-deconvolutional networks
4.
Brain tumor segmentation with Deep Neural Networks
5.
肝脏分割 Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields
6.
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
7.
3D MRI brain tumor segmentation using autoencoder regularization
8.
R-FCN: Object Detection via Region-based Fully Convolutional Networks
9.
Fully Convolutional Adaptation Networks for Semantic Segmentation
10.
One-Pass Multi-task Convolutional Neural Networks for Efficient Brain Tumor Segmentation
更多相关文章...
•
W3C RDF and OWL 活动
-
W3C 教程
•
XSL-FO table-and-caption 对象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 数据传输及反压详解
相关标签/搜索
networks
based
segmentation
tumor
fully
convolutional
brain
detection
automatic
unet
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
ubantu 增加搜狗输入法
2.
用实例讲DynamicResource与StaticResource的区别
3.
firewall防火墙
4.
页面开发之res://ieframe.dll/http_404.htm#问题处理
5.
[实践通才]-Unity性能优化之Drawcalls入门
6.
中文文本错误纠正
7.
小A大B聊MFC:神奇的静态文本控件--初识DC
8.
手扎20190521——bolg示例
9.
mud怎么存东西到包_将MUD升级到Unity 5
10.
GMTC分享——当插件化遇到 Android P
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks_2017
2.
Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks
3.
Automatic skin lesion segmentation with fully convolutional-deconvolutional networks
4.
Brain tumor segmentation with Deep Neural Networks
5.
肝脏分割 Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields
6.
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation
7.
3D MRI brain tumor segmentation using autoencoder regularization
8.
R-FCN: Object Detection via Region-based Fully Convolutional Networks
9.
Fully Convolutional Adaptation Networks for Semantic Segmentation
10.
One-Pass Multi-task Convolutional Neural Networks for Efficient Brain Tumor Segmentation
>>更多相关文章<<