JavaShuo
栏目
标签
Speed/accuracy trade-offs for modern convolutional object detectors
时间 2021-01-12
原文
原文链接
论文:https://arxiv.org/abs/1611.10012 1、Motivation 这篇文章通过大量的实验,主要权衡了三种被称为“元结构”(meta-architectures)的主流,教我们如何选择速度和精度满足要求的检测器。充分的对比了Faster RCNN、RFCN和SSD优缺点,并且实验的设计非常系统。 2、作者做了哪些实验 <1> 首先作者在TensorFlow里复现了Fa
>>阅读原文<<
相关文章
1.
Speed/accuracy trade-offs for modern convolutional object detectors
2.
[论文笔记]Speed/accuracy trade-offs for modern convolutional object detectors
3.
【论文学习记录】Speed/accuracy trade-offs for modern convolutional object detectors
4.
论文:Speed/accuracy trade-offs for object detectors
5.
one-stage object detectors(1)
6.
SiamFC:Fully-Convolutional Siamese Networks for Object Tracking
7.
Fully-Convolutional Siamese Networks for Object Tracking
8.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
9.
FCOS: Fully Convolutional One-Stage Object Detection
10.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
更多相关文章...
•
Scala for循环
-
Scala教程
•
Swift for 循环
-
Swift 教程
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
•
使用Rxjava计算圆周率
相关标签/搜索
convolutional
detectors
tradeoffs
modern
object...object
object
Modern PHP
modern-php
object%20object
4.object
MyBatis教程
Hibernate教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
springboot在一个项目中启动多个核心启动类
2.
Spring Boot日志-3 ------>SLF4J与别的框架整合
3.
SpringMVC-Maven(一)
4.
idea全局设置
5.
将word选择题转换成Excel
6.
myeclipse工程中library 和 web-inf下lib的区别
7.
Java入门——第一个Hello Word
8.
在chrome安装vue devtools(以及安装过程中出现的错误)
9.
Jacob线上部署及多项目部署问题处理
10.
1.初识nginx
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Speed/accuracy trade-offs for modern convolutional object detectors
2.
[论文笔记]Speed/accuracy trade-offs for modern convolutional object detectors
3.
【论文学习记录】Speed/accuracy trade-offs for modern convolutional object detectors
4.
论文:Speed/accuracy trade-offs for object detectors
5.
one-stage object detectors(1)
6.
SiamFC:Fully-Convolutional Siamese Networks for Object Tracking
7.
Fully-Convolutional Siamese Networks for Object Tracking
8.
DSOD: Learning Deeply Supervised Object Detectors from Scratch
9.
FCOS: Fully Convolutional One-Stage Object Detection
10.
Reading Note: DSOD: Learning Deeply Supervised Object Detectors from Scratch
>>更多相关文章<<